請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38420完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉懷勝教授 | |
| dc.contributor.author | TzeKhai Lin | en |
| dc.contributor.author | 林詩凱 | zh_TW |
| dc.date.accessioned | 2021-06-13T16:33:02Z | - |
| dc.date.available | 2005-07-28 | |
| dc.date.copyright | 2005-07-28 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-10 | |
| dc.identifier.citation | Alexander, M. (1999). Biodegradation and Bioremediation 2. (pp. 200-202, 271-279, 282-283, 287). New York: Academic Press.
Alvarez, H. M., Souto, M. F., Viale, A., and Pucci, O. H. (2001). Biosynthesis of fatty acids and triacylglyverols by 2, 6, 10, 14-tetramethyl pentadecane-grown cells of Nocardia globerula 432. FEMS micro. biol. lett., 200, 195-200. Alvarez, P. J. J., Anid, P. J., and Vogel, T. M. (1991). Kinetics of aerobic biodegradation of benzene and toluene in sandy aquifer material. Biodegradation 2, 43-51. Atlas, R.M. (1981). Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbial Review, 45, 180-209. Atlas, R. M. (1998). Petroleum biodegradation and oil soil bioremediation. Marine Pollution Bulletin, 31, 178-182. Barry, C. E., Lee, R. E., Mdluli, K., Sampson,A. E., Schroeder,B. G., Slayden, R. A., and Yuan, Y. (1998). Mycolic acids: structure, biosynthesis and physiological functions. Prog. Lipid Res., 37, 143–179. Basel, J. B., and Mortimer, R. K. (1985). Identification of mutations preventing n-hexadecane uptake among 26 n-alkane non-utilizing mutants of Yarrovwia (Saccharomycopsis) lipolytica. Curr. Genet., 9, 579-586. Bauer, J. E., and Capone, D. G. (1985). Degradation and mineralization of the polycyclic aromatic hydrocarbons: anthracene and naphthalene in intertidal marine sediments. Appl. Environ. Microbiol., 50, 81-90. Bicca, F. C., Fleck, L. C., and Ayub, M. A. Z. (1999). Production of Biosurfactant by Hydrocarbon Degrading Rhodococcus rubber and Rhodococcus erythropolis. Revista de Microbiologia, 30, 231-236. Bossert, I., and Bartha, R. R. (1984). The fate of petroleum in soil ecosystems. In R. M. Atlas (Ed.), Petroleum microbiology. (pp. 435-473). New York: Macmillan. Bouchez-Naitali M., Blanchet D., Bardin V., and Vandecasteele J-P. (2001). Evidence for interfacial uptake in hexadecane degradation by Rhodococcus equi: the imporatnace of cell flocculation. Microbiol SGM, 147, 2537-2543. Boulton, C. A. and Ratledge, C. (1984). The Physiology of Hydrocarbon-Utilizing Microorganism. Top. Enzyme Ferment. Biotechnol., 9, 11-77. Britton, L. N. (1984). Microbial Degradation of Aliphatic Hydrocarbons. In: D.T. Gibson (Ed.), Microbal Degradation of Organic Compounds, New York: Marcel Dekker. Burke, G., Singh, B. R., and Theodore, L. (2000). Handbook of Environmental Management and Technology. (pp. 597). John Wiley & Sons, Inc. Canter, L. W., and Knox, R. C. (1985). Ground Water Pollution Control. (pp. 526). Chelsea: Lewis Publishers. Chapelle, F. H. (1992). Ground-water Microbiology and Geochemistry. (pp. 53-90). John Wiley & Sons, Inc. Chun, J., Blackall, L. L., Kang, S. O., Hah Y. C., and Goodfellow M. (1996). Phylogeny of mycolic acid containing actinomycetes. J. Ind. Microbiol., 17, 205-213. Collins, M. D., Goodfellow, M., and Minnikin, D .E. (1982). A survey of the structures of mycolic acids in Corynebacterium and related taxanomy. J. Gen. Microbiol., 128, 129–149. Cookson, A. L., Handley, P. S., Jacob, A. E., Watson, G. K., and Allison, C. (1995). Coaggregation between Prevotella nigrescens and Prevotella intermedia with Actinomyces naeslundii strains. FEMS micro. biol. Lett., 132, 291-296. Coony, J. J., and Summers, A. S. (1985). Factor influencing hydrocarbon degradation in three freshwater lakes. Microb. Ecol., 11, 127-137. de Carvalho, C. C. C. R., and da Fonseca M. M. R. (2005). Degradation of hydrocarbons and alcohols at different temperatures and salinities by Rhodococcus erythropolis DCL14. FEMS Microbiology Ecology, 51, 389–399. Eastcott, L., Shui, W. Y., and Mackay D. (1988). Environmentally relevant physicochemical properties of hydrocarbons: a review of data and development of simple correlations. Oil Chem. Pollut., 4, 1-44. Ejlertsson, J., Johansson, E., Karlsson, A., Meyerson, U., and Svensson, B. H. (1996). Anaerobic degradation of xenobiotics by organisms from municipal solid waste under landfilling conditions. Antonie van leeuwenhock, 69, 67-74. Evans, G. M., and Furlong, J. C. (2003). Contaminated Land and Bioremediation. Environmental Biotechonology Theory and Application. (pp. 91-94). England: John Wiley & Sons, Inc. Eweis, J. B., Ergas, S. J., Chang, D. P. Y., and Schroeder, E. D. (1998) Bioremediation Principles. (pp. 86, 105, 109, 111-113). McGraw-Hill Companies, Inc. Farrar, W. E. (1963). Serious infections due to ‘non-pathogenic’ organisms of the genus Bacillus. Am. J. Med., 34, 134. Finnerty, W. R., and Kallio, R. E. (1964). Origin of palmitic acid carbon in palmitates formed from hexadecane-1-C14 and tetradecane-1-C14 by Micrococcus cerificians. J. Bacteriol., 87(6), 1261-1265. Finnerty, W.R. (1992). The biology and genetics of the genus Rhodococcus. Ann. Rev. Microbiol., 46, 193-218. Freeze, R.A., and Cherry, J.A. (1979). Groundwater. (pp. 227). NJ Englewood Cliffs: Prentice-Hall, Inc. Galanakis, E., Bitsori, M., Samonis, G., Christidou, A., Georgiladakis, A., Sbyrakis, S., and Tselentis, Y. (2002). Ochrobactrum anthropi Bacteraemia in Immunocompetent Children. Scand. J. Infect Dis., 34, 800-803. Gaudy, A. F., and Elizabeth, T. G. (1980). Microbiology for Environmental Scientist and Engineers. (pp. 58-80). McGraw-Hill, Inc. Gibson, S. A., and Suflita, J. M. (1986). Extrapolation of biodegradation results to groundwater aquifers: reductive dehalogenation of aromatic compounds. Appl. Environ. Microbiol., 52(4), 681-688. Goma, G., and Ribot, D. (1978). Hydrocarbon fermentation: kinetics of microbial cell growth. Biotechnol. Bioeng., 20, 1723-1734. Goodfellow, M. (1989). Genus Rhodococcus. In William, S. T., Sharpe M. E., and Holt J, G. (Eds.), Bergey Mannual Systematic Bacteriology. (Vol. 4, pp. 2362- 2371). Baltimore: Williams and Wilkins. Goswami, P., and Singh, H. D. (1991). Different Modes of Hydrocarbon Uptake by Two Pseudomonas Species. Biotechnol. Bioeng., 37, 1-11. Hector, M. Alvarez, M. F. S., Viale, A., and Pucci, O. H. (2001). Biosynthesis of fatty acids and triacylglyverols by 2, 6, 10, 14-tetramethyl pentadecane-grown cells of Nocardia globerula 432. FEMS micro. biol. lett., 200, 195-200. Holmes, B., Popoff, N., Kiredjian, M., and Kersters, K. (1988). Ochrobactrum anthropi gen. Nov., sp. Nov. from human clinical specimens and previously known as group Vd., Int. J. Syst. Bacteriol., 38, 406-416. Hoover, D. G., Borgonovi, G. E., Jones, S. H., and Alexander, M. (1986). Anomalies in mineralization of low concentrations of organic compounds in lake water and sewage. Appl. Environ. Microbiol., 51, 226-232. Huesemann, M. H. (1995). Predictive model for estimating the extent of petroleum hydrocarbon biodegradation in contaminated soils. Environ. Sci. Technol., 29, 7-18. Isaacson, P., Jacobs, P. H., Mackenzine, A. M. R., and Mathew, A. W. (1976). Pseudotumour of the lung caused by infection with Bacillus sphaericus. J. Clin. Pathol., 29, 806. Iwabuchi, N., Sunairi, M., Anzai, H., Hisao, M., and Nakajima, M. (2003). Relationships among colony morphotypes, cell- surface properties and bacterial adhesion to substata in Rhodococcus. Colloids and surfaces B: Biointerfaces, 30, 51-60. Kakii, K., Sugahara, E., Shirakashi, T., and Kuriyama, M. (1986). Isolation and characterization of a Ca-dependent floc-forming bacterium. J. Ferment. Technol., 64, 57–62. Kakii, K., Hasumi, M., Shirakashi, T., and Kuriyama, M. (1990). Involvement of Ca+2 in the flocculation of Kluyvera cryocrescens KA-103. J. Ferment. Bioeng., 69, 224–227. Kim, L. S., Foght, J. M., and Gray, M. R. (2002). Selective transport and accumulation of alkanes by Rhodococcus erythropolis S+14He. Biotechnol. Bioeng., 80(6), 650-659. Kolenbrander, P. E. (1989). Surface recognition among oral bacteria: multigeneric coaggregations and their mediators. CRC Crit. Rev. Microbiol., 17, 137–158. Kolenbrander, P. E., Andersen, R. N., and Holdeman, L. V. (1985). Coaggregation of oral bacteroides species with other bacteria: central role in coaggregation bridges and competitions. Infect. Immun., 48, 741–746. Koronelli, T.V. (1996). Principles and methods for raising the efficiency of biological degradation of hydrocarbons in the environment: review. Appl. Biochem. Microbiol., 32, 519-525. Kurane, R. and Tomizuka, N. (1992). Towards new biomaterial produced by microorganism – bioflocculant and bioabsorbent. Nippon Kagaku Kaishi, 5, 453-463. Kurane, R., Toeda, K., Takeda,K., and Suzuki, T. (1986). Culture conditions for prodcution of microbial flocculant by Rhodococcus erythropolis. Agric. Biol. Chem., 50(9), 2309-2313. Kurane, R., Hatamochi, K., Kakuno, T., Kiyohara, M., Kawaguchi, K. Mizuno, Y., Hirano, M., and Taniguchi, Y. (1994). Purification and characterization of lipid bioflocculant produced by Rhodococcus erythropolis. Biosci. Biotech. Biochem., 58(11), 1977-1982. Kurane, R., Haramochi, K., Kakuno, T., Kiyohara, M., Tajima, T., Hirano, M., and Taniguchi, Y. (1995). Chemical structure of lipid bioflocculant produced by Rhodococcus erythropolis. Biosci. Biotech. Biochem., 59(9), 1652-1656. Lebuhn, M., Achouak, W., Schloter, M., Berge, O., Meier, H., Barakat, M., Hartmann, A., and Heulin, T. (2000). Taxonomic characterization of Ochrobactrum sp. isolates from soil and wheat roots, and description of Ochrobactrum tritici sp. nov. and Ochrobactrum grignonense sp. nov., Int. J. Syst. Evol. Microbiol., 50, 2207-2223. Mackay, D., and McAuliff, C. D. (1988). Fate of hydrocarbons discharged at sea. Oil Chem. Pollut., 5, 1-20. Malik, A., Sakamoto, M., Hanazaki, S., Osawa, M., Suzuki, T., Tochigi, M., and Kakii, K. (2003(a)). Coaggregation among Nonflocculating bacteria isolated from activated sludge. Appl. Environ. Microbiol., 69, 6056-6063. Malik, A., Sakamoto, M., Ono, T., and Kakii, K. (2003(b)). Coaggregation between Acinetobacter johnsonii S35 and Microbacterium esteraromaticum strains isolated from sewage activated sludge. J. Biosci. Bioeng., 96, 10-15. Marin, M., Pedregosa, A., Rios, S., Ortiz, M. L., and Laborda, F. (1995). Biodegradation of Diesel and Heating Oil by Acinetobacter calcoaceticus MM5: its Possible Applications on Bioremediation. International Biodeterrioration and Biodegradation , 269-285. Marine Pollution Bulletin. (2000). Fall In Large Tanker Casualties Reported by Salvage Operators. Marine Pollution Bulletin, 40, 363. McNeil, M. M., and Brown, J. M. (1994). The medically important aerobic actinomycetes:epidemiology and microbiology. Clinical Microbiology Reviews, 7, 357-417. Moran, B. N., and Hickey, W. J. (1997). Trichloroethylene biodegradation by mesophilic and psychrophilic ammonia oxidizers and methanotrophs in groundwater microcosms. Appl. Environ. Microbiol., 63(10), 3866-3871. Nakahara, T., Erickson L. E., and Gutierrez J. R. (1977). Characterisics of hydrocarbon uptake in cultures with two liquid phases. Biotechnol. Bioeng., 19, 9-25. Nakamura, J., Miyashiro, S., and Hirose, Y. (1976). Screening, isolation, and some properties of microbial cell flocculants. Agric. Biol. Chem., 40, 377-383. National Research Council. (1993). Principles of Bioremediation. In Situ Bioremediation: When does it work? (pp. 16-22). Washington D.C.: National Academy Press. Nelson, N. J. K., Montgonery, S. O., O’Neill, E. J., and Pritchard, P. H. (1986). Aerobic metabolism of trichloroethylene by a bacterial isolate Appl. Environ. Microbiol., 52(2), 383-384 Neu, T. R. (1996). Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiol. Rev., 60, 151- 166. Nyer, E. K. (1998). Groundwater and soil remediation: practical methods and strategies. (pp. 136, 189-191, 196). Ann Arbor Press. Paje, M. L. F., Neilan, B. A., Couperwhite, L. (1997). A Rhodococcus species that thrives on medium saturated with liquid benzene. Microbiology, 143, 2975-2981. Palmer, S. E. (1993). Effect of biodegradation and water washing on crude oil composition. In: Engel, M.H., Macko, S.A.(Eds), Organic Geochemistry. New York: Plenum Press. Parry, J. M., Turnbull, P. C. B., and Gibson, J. R. (1988). A Colour Atlas of Bacillus Species. (pp. 166-170). Wolfe Medical Publications Ltd. Pirnik, M. P. (1976). Microbial oxidation of methyl branched alkane. CRC Crit. Rev. Microbial, 5, 413-422. Pritchard, P. H., Cripe, C. R., Walker, W. W., Spain, J. C., and Bourquin, A. W. (1987). Biotic and abiotic dehydration rates of methyl parathion in freshwater and estuarine water and sediment samples. Chemosphere, 16, 1509-1520. Reddy, P. G., Singh, H. D., Roy, P. K., and Baruah, J. N. (1982). Predominant role of hydercarbon solubilization in the microbial uptake of hydrocarbons. Biotechnol. Bioeng., 24, 1241-1269. Rehm, H. J., and Reed, G.. (1987). Biotechnology.( vol. 6a.).Weinheim, New York Rehm, H. J., and Reiff, I. (1982). Regulationder mikrobiellen alkanoxidation mit binblick auf die produktbildung. Acta Biotechnol., 2, 127-138. Reid, G., McGroarty, J. A., Angotti, R., and Cook, R. L. (1990). Lactobacillus inhibitor production against Escherichia coli and coaggregation ability with uropathogens. Can. J. Microbiol., 34, 344–351 Retledge C. (1984). Microbial conversions of alkane and fatty acid. J. Am. Oil Chem. Soc., 61, 447-453. Rooney-Varga, J. N., Anderson, R. T., Fraga, J. L., Ringelberg, D., and Lovley, D. R. (1999). Microbial communities associated with anaerobic benzene degradation in a petroleum-contaminated aquifer. Appl. Environ. Microbiol, 65(7), 3056-3063. Rubin, H. E., Subba-Rao, R. V., and Alexander, M. (1982). Rates of mineralization of trace concentrations of aromatic compounds in lake water and sewage samples. Appl. Environ. Microbiol., 43, 1133-1138. Shimizu, N., and Odawara, Y. (1985). Floc forming bacteria isolated from activated sludge in high-BOD loading treatment. J. Ferment. Technol., 63(1), 67-71. Shinohara, S. (1979). Japanese Patent (Kokai Koho) S5455798. Song, H. G., Xiaoping, W., and Bartha, R. (1990). Bioremediation potential of terrestrial fuel spills. Appl. Environ. Microbiol., 52, 652-656. Stewart, J. E., Finnerty, W. R., Kallio, R. E., and Stevenson, D.P. (1960). Esters fro bacterial oxidation of olefins. Science, 132, 1254-1255. Tago, Y., and Aida K. (1977). Extracellular mucopolysaccharide closely related to bacterial floc formation. Appl. Environ. Microbiol., 34, 308–314. Takagi, H., and Kadowaki, K. (1985). Flocculant production by Paecilomyces sp. taxonomic studies and culture conditions for productions. Agri. Biol. Chem., 49(11), 3151-3157. Thomas, T. M., and Ward, C. H. (1989). In situ biorestoration of organic contaminants in the subsurface. Environ. Sci. Technol., 23, 760-765. Tezuka, Y. (1969). Cation-dependent flocculation in a Flavobacterium species predominant in activated sludge. Appl. Microbiol., 17, 222–226. Verkooyen A. H. M., Van Den Oever, A. H. C., and Rietema, L. (1980). Growth of yeast on n-alkanes. II. Adsorption-desorption phenomena. Biotechnol. Bioeng., 22, 597-613. van Beilen, J.B., Li, Z., Duetz, W.A., Smitsand, T.H.M., and Witholt, B. (2003).Diversity of Alkane Hydroxylase Systems in the Environment. Oil & Gas Science and Technology, 58(4), 427-440. Wainwright, M. (1999). An Introduction to Environmental Biotechnology. (pp. 38-39). Kluwer Academic Publishers. Walworth, J. L., and Reynolds, C. M. (1995). Bioremediation of a petroleum-contaminated cryic soil: effects of phosphorus, nitrogen, and temperature. Journal of Soil Contamination, 4(3), 299-310. Wang D. I. C., and Ochoa, A. (1972). Measurement on the interfacial areas of hydrocarbon in yeast fermentation and relationships to specific growth rates. Biotechnol. Bioeng., 14, 345-360. Wang, Y. S., Madsen, E. L., and Alexander, M. (1985). Microbial degradation by mineralization or cometabolism determined by chemical concentration and environment. J. Agric. Food. Chem., 33, 495-499. Warhurst, A. W., and Fewson C. A. (1994). Biotransformations catalyzed by the genus Rhodococcus. Crit. Rev. Biotechnol., 14, 29-73. Watkinson, R., and Morgan, P. (1990). Physiology of aliphatic hydrocarbon-degrading microorganisms. Biodegradation, 1, 79-92. Whyte, L. F. Hawari, J., Zhou, E., Bourbonniere, L., Inniss, W. E., and Greer, C. W. (1998). Biodegradation of Variable-chain-length alkanes at low temperatures by psychrotrophic Rhodococcus sp. Appl. Environ. Microbiol., 7, 2578-2584. Yadav, J. S., and Reddy, C. A. (1993). Degradation of benzene, toluene, ethylbenzene, and xylenes (BTEX) by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl. Environ. Microbiol., 59(3), 756-762. Yagafarova, G. G., and Skvortsova, I. N. (1996). A new oil-oxidizing strain of Rhodococcus erythropolis. Appl. Biochem. Microbiol., 32, 207-209. Yamada-Onodera, K., Mukumoto, H., Katsuyama, Y., and Tani, Y. (2002). Degradation of long-chain alkanes by polyethylene-degrading fungus, Penicillium simplicissium YK. Enzyme Microb. Technol., 30, 828-831. Zhang, Y., and Miller, R. M. (1994). Effect of a Pseudomonas rhamnolipid biosurfactant on cell hydrophobicity and biodegradation of octadecane. Appl. Environ. Microbiol., 160, 2102-2106. Zitrides, T. (1983). Biodecontamination of spill site. Pollution Engineering, 15, 25-27. Zajic, J. E., and Knettig, E. (1971). Developments in Industrial Microbiology. (pp. 87-98). Washington D.C.: American Institute of Biological Science. 支振峰,2004,郵輪洩漏與海洋生物災難,人民報社。(http://www.people.com.cn/GB/paper2515/12239/1101549.html) 何崇麟,2005,利用單一菌株(NTU-1)混合菌株(TN-4)處理正十四烷之研究,台灣大學碩士論文。 張緯農,2003,利用混合菌株(TN-4)處理異十九烷之研究,台灣大學碩士論文。 盧曉鳳,2000,煤油之生物分解 – 煉油廠廢水之實際應用,台灣大學碩士論文。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38420 | - |
| dc.description.abstract | 石油為世界上主要的能源, 但同時也給人類生存的環境帶來了嚴重污染,因此要如何降低石油碳氫化合物對環境的影響是非常重要的。本研究主要探討TN-4混合菌株與Rhodococcus erythropolis NTU-1單一菌株在(1)不同正十六烷濃度與(2)不同初始培養基酸鹼值下對正十六烷所呈現的生物降解能力以及烷類包覆能力。
從實驗觀察顯示,TN-4的生長會隨著烷類濃度的增加而提高,但其生物降解量在高濃度基質的情況下卻沒有顯著的提升。反觀NTU-1單一菌株,其生長與生物降解能力,並不會受到正十六烷濃度變化之影響。在探討最佳初始培養基酸鹼值的實驗中(正十六烷濃度為1470ppm),我們發現實驗進行66小時後,TN-4與NTU-1均能在pH 7.5的環境下移除近100%的正十六烷,達到最好的總移除效率。 此外,TN-4與NTU-1在降解烷類的過程中會慢慢聚集成0.1~2cm的細菌顆粒包覆住在培養基中的正十六烷,把剩下的烷類有效移除。TN-4混合菌株所形成的結塊大多數都呈暗黃色,且顆粒都比較結實緊密,NTU-1所形成的菌團卻以乳白色爲主,與TN-4比較起來較爲鬆散,烷類的包覆效果也沒TN-4好。另外,從實驗中發現於培養基中加入己酸後會使細菌會變得更容易的靠攏聚集在一起。TN-4與NTU-1處理正十六烷時所呈現的生物降解能力與結塊極爲相似,證明NTU-1是主導生物降解與形成結塊的主要功臣。細菌結塊的能力能夠將烷類有效移除,因此微生物結塊能力之研究是不容忽視的。 | zh_TW |
| dc.description.abstract | Petroleum is one of the world’s major resources of energy. Nevertheless, continual exploitation of petroleum hydrocarbon has severely polluted our environment and threatened the well being of human life. The major purpose of this research was to investigate n-hexadecane biodegradability and bioflocculate formation performed by a mixed culture TN-4 and a pure culture Rhodococcus erythropolis NTU-1. Two key abiotic factors (1) n-hexadecane concentration and (2) initial acidity of culture medium, were altered to carry out the research work.
It was discovered that the growth of TN-4 increased as the concentration of n-hexadecane rises even though the alkane consumption ability performed was fairly alike especially under high substrate concentration. However, both growth and biodegradability of NTU-1 was not affected for culture under different concentration of n-hexadecane. In addition, TN-4 and NTU-1 attained the best alkane removal efficiency when the initial acidity of culture medium was adjusted to pH 7.5. Both strains successfully removed almost 100% of n-hexadecane (up to 1470 ppm) after incubation for 66 hours. The bioremediation process was accompanied by formation of bacterial pellets (bioflocculate), with size ranging from 0.1 to 2 cm in diameter. This flocculation mechanism had provided high removal efficiency as most of the residual n-hexadecane was engulfed by the bacterial pellets and being consequently biodegraded. Aggregates formed by TN-4 are yellowish, round in shape and relatively firmer. Aggregates formed by NTU-1 are white in color and much incompact in comparison. Furthermore, it was also discovered that further addition of hexanoic acid into the culture could have possibly modified the surface properties of the cell because the flocs formed during incubation tended to attach to each other furing incubation. Besides that, due to the comparable results shown by these two strains, it was postulated that NTU-1 played a primary role of n-hexadecane degradation as well as bioflocculate formation throughout the process. Last but not least, development of bioflocculate was non trivial due to its importance in the enhancement of alkane mediation as well as easy removal of suspended solids in wastewater treatment. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T16:33:02Z (GMT). No. of bitstreams: 1 ntu-94-R92524091-1.pdf: 2156449 bytes, checksum: ef77f4a014b9bf759136fca125946919 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 第一章 序論 1
1-1 前言 1 1-2 研究目的 2 第二章 文獻回顧 3 2-1 石油碳氫化合物及其對環境的影響 3 2-2 自然界中石油碳氫化合物之消滅機制 4 2-3 微生物對石油碳氫化合物之降解作用 5 2-3-1 微生物與碳氫化合物之生物利用性 6 2-3-2 微生物對碳氫化合物之分解模式 7 2-3-3 微生物對烷類之代謝途徑 10 2-3-4 微生物對碳氫化合物之攝取模式 15 2-4 環境因子對微生物之影響 17 2-4-1 溫度之影響 17 2-4-2 酸鹼值之影響 19 2-5 微生物之結塊現象 20 2-6 菌株Rhodococcus erythropolis、Bacillus fusiformis與Ochrobactrum屬之特性 23 2-6-1 菌株Rhodococcus erythropolis之特性與應用 23 2-6-2 菌株Bacillus fusiformis之特性與運用 25 2-6-3 菌株Ochrobactrum菌屬之特性與運用 26 第三章 實驗設備與方法 27 3-1 實驗菌株之組成 27 3-2 培養基之組成 30 3-2-1 基礎礦物培養基 30 3-2-2 菌株活化培養基 32 3-2-3 菌株保存培養基 32 3-2-4 計數平板培養基 33 3-2-5 實驗藥品及器材 33 3-3 實驗方法 35 3-3-1 菌株活化與培養 35 3-3-2 生物降解正十六烷之測定 37 3-3-3 氣相層析儀校正曲線與設定 40 第四章 結果與討論 41 4-1 混合菌株TN-4於不同濃度正十六烷之生物降解能力與包覆現象 42 4-1-1 培養液酸鹼值之下降趨勢 42 4-1-2 TN-4混合菌株的生長趨勢 44 4-1-3 TN-4混合菌株對烷類的生物降解與包覆能力 46 4-2 不同酸鹼環境對TN-4混合菌株處理正十六烷之影響 51 4-2-1 培養液酸鹼值之下降趨勢 52 4-2-2 TN-4混合菌株的生長趨勢 53 4-2-3 TN-4混合菌株對烷類的降解與包覆能力 54 4-3 Rhodococcus erythropolis NTU-1於不同濃度正十六烷之生物降解能力與包覆現象 59 4-3-1 培養液酸鹼值之下降趨勢 59 4-3-2 NTU-1單一菌株的生長趨勢 61 4-3-3 NTU-1單一菌株對烷類的降解與包覆能力 62 4-4 不同酸鹼環境對NTU-1單一菌株處理正十六烷之影響 68 4-4-1 培養液酸鹼值之下降趨勢 68 4-4-2 NTU-1單一菌株之生長趨勢 70 4-4-3 NTU-1混合菌株對烷類的降解與包覆能力 71 4-5 TN-4混合菌株與NTU-1單一菌株於正十六烷處理之比較 76 4-5-1 不同濃度正十六烷培養下TN-4與NTU-1之比較 76 4-5-2 不同培養基初始酸鹼值培養下兩種菌株之比較 80 4-5-3 TN-4與NTU-1之總結與對未來工程運用之意義 81 4-6 細菌結塊現象之研究 85 4-6-1 培養液對細菌結塊的影響 85 4-6-2 培養過程中添加己酸(Hexanoic Acid)對混合菌株TN-4聚集效果之影響 90 第五章 結論與建議 97 5-1 結論 97 5-2 建議 100 第六章 參考文獻 101 附錄 112 附錄 (A) 113 1-0 各菌株在NB中之生長情形 113 2-0 細胞乾重與吸光值的關係 115 3-0 碳氫化合物濃度與積分面積之校正曲線 117 附錄(B) 118 1-0 加入丁酸與庚酸對於NTU-1單一菌株處理正十六烷之實驗結果 118 | |
| dc.language.iso | zh-TW | |
| dc.subject | 烷細菌結塊 | zh_TW |
| dc.subject | 生物降解 | zh_TW |
| dc.subject | 正十六 | zh_TW |
| dc.subject | bioremediation | en |
| dc.subject | n-hexadecane | en |
| dc.subject | bioflocculate | en |
| dc.title | 利用混合菌株(TN-4)與單一菌株(Rhodococcus erythropolis NTU-1)處理正十六烷之研究 | zh_TW |
| dc.title | Bioremediation of n-hexadecane by mixed culture TN-4 and pure culture Rhodococcus erythropolis NTU-1 | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王勝仕教授,許駿發博士,巫鴻章博士 | |
| dc.subject.keyword | 生物降解,正十六,烷細菌結塊, | zh_TW |
| dc.subject.keyword | bioremediation,n-hexadecane,bioflocculate, | en |
| dc.relation.page | 118 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-11 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 2.11 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
