Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38418Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 蔡偉博(Wei-Bor Tsai) | |
| dc.contributor.author | Tsung-Han Wu | en |
| dc.contributor.author | 吳宗翰 | zh_TW |
| dc.date.accessioned | 2021-06-13T16:32:59Z | - |
| dc.date.available | 2016-07-20 | |
| dc.date.copyright | 2011-07-26 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-19 | |
| dc.identifier.citation | 1. R.G. Flemming, C.J. Murphy, G.A. Abrams, S.L. Goodman, P.F. Nealey, Effects of synthetic micro- and nano-structured surfaces on cell behavior. Biomaterials, 1999. 20(6): p. 573-88.
2. Lim, J.Y. and H.J. Donahue, Cell sensing and response to micro- and nanostructured surfaces produced by chemical and topographic patterning. Tissue Eng, 2007. 13(8): p. 1879-91. 3. P. CLARK, P. CONNOLLY, A. S. G. CURTIS, J. A. T. DOW and C. D. W. WILKINSON, Topographical control of cell behaviour. I. Simple step cues. Development, 1987. 99(3): p. 439-48. 4. Weiss, P. and B. Garber, Shape and Movement of Mesenchyme Cells as Functions of the Physical Structure of the Medium: Contributions to a Quantitative Morphology. Proc Natl Acad Sci U S A, 1952. 38(3): p. 264-80. 5. L. A. LYASS, A. D. BERSHADSKY, J. M. VASILIEV, AND 1. M. GELFAND, Microtubule-dependent effect of phorbol ester on the contractility of cytoskeleton of cultured fibroblasts. Proc Natl Acad Sci U S A, 1988. 85(24): p. 9538-41. 6. Anselme, K., Osteoblast adhesion on biomaterials. Biomaterials, 2000. 21(7): p. 667-81. 7. Nathaniel P., C., F. Robert J., and M. Van C., Composition and dynamics of articular cartilage: structure, function, and maintaining healthy state. J Orthop Sports Phys Ther., 1998. 28(4): p. 203-215. 8. Teixeira, A.I., P.F. Nealey, and C.J. Murphy, Responses of human keratocytes to micro- and nanostructured substrates. J Biomed Mater Res A, 2004. 71(3): p. 369-76. 9. Wang, P.Y., H.T. Yu, and W.B. Tsai, Modulation of alignment and differentiation of skeletal myoblasts by submicron ridges/grooves surface structure. Biotechnol Bioeng, 2010. 106(2): p. 285-94. 10. Charest, J.L., A.J. Garcia, and W.P. King, Myoblast alignment and differentiation on cell culture substrates with microscale topography and model chemistries. Biomaterials, 2007. 28(13): p. 2202-10. 11. Evans, D.J., S. Britland, and P.M. Wigmore, Differential response of fetal and neonatal myoblasts to topographical guidance cues in vitro. Dev Genes Evol, 1999. 209(7): p. 438-42. 12. Ngan F. Huang, Shyam Patel, Rahul G. Thakar, Jun Wu,Benjamin S. Hsiao, Benjamin Chu, Randall J. Lee, and Song Li, Myotube assembly on nanofibrous and micropatterned polymers. Nano Lett, 2006. 6(3): p. 537-42. 13. Mai T. Lam, Sylvie Sim, Xiaoyue Zhu, Shuichi Takayam, The effect of continuous wavy micropatterns on silicone substrates on the alignment of skeletal muscle myoblasts and myotubes. Biomaterials, 2006. 27(24): p. 4340-7. 14. Esther Rebollar, Irene Frischauf, Michael Olbrich , Thomas Peterbauer , Steffen Hering,Johannes Preiner, Peter Hinterdorfer, Christoph Romanin, Johannes Heitz ,Proliferation of aligned mammalian cells on laser-nanostructured polystyrene. Biomaterials, 2008. 29(12): p. 1796-806. 15. Shimizu, K., H. Fujita, and E. Nagamori, Alignment of skeletal muscle myoblasts and myotubes using linear micropatterned surfaces ground with abrasives. Biotechnol Bioeng, 2009. 103(3): p. 631-8. 16. Hersel, U., C. Dahmen, and H. Kessler, RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials, 2003. 24(24): p. 4385-415. 17. Samuel Y. Boateng,Syed S. Lateef,William Mosley,Thomas J. Hartman,Luke Hanley,and Brenda Russell, RGD and YIGSR synthetic peptides facilitate cellular adhesion identical to that of laminin and fibronectin but alter the physiology of neonatal cardiac myocytes. Am J Physiol Cell Physiol, 2005. 288(1): p. C30-8. 18. Tsai, W-B., Fabrication of UV-crosslinked chitosan scaffolds with conjugation of RGD peptides for bone tissue engineering. Carbohydrate Polymers, 2011. 85: p. 129-137. 19. Wei-Bor Tsai , Rita Pei-Yeh Chen , Kuang-Ling Wei , Yi-Ru Chen,Tai-Yan Liao , Hsuan-Liang Liu , Juin-Yih Lai, Polyelectrolyte multilayer films functionalized with peptides for promoting osteoblast functions. Acta Biomater, 2009. 5(9): p. 3467-77. 20. P. Clark ,G. Dunn, Knibbs, M. Peckham, Alignment of myoblasts on ultrafine gratings inhibits fusion in vitro. Int J Biochem Cell Biol, 2002. 34(7): p. 816-25. 21. Kate Rochlin, Shannon Yu, Sudipto Roy, and Mary K. Baylies, Myoblast fusion: when it takes more to make one. Dev Biol, 2010. 341(1): p. 66-83. 22. Huang, W. and H. Liao, [Research progress of scaffold materials in skeletal muscle tissue engineering]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, 2010. 24(11): p. 1386-91. 23. Yaffe, D. and O. Saxel, Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature, 1977. 270(5639): p. 725-7. 24. Dennis, R.G. and P.E. Kosnik, 2nd, Excitability and isometric contractile properties of mammalian skeletal muscle constructs engineered in vitro. In Vitro Cell Dev Biol Anim, 2000. 36(5): p. 327-35. 25. Wakelam, M.J., The fusion of myoblasts. Biochem J, 1985. 228(1): p. 1-12. 26. Bader, M., Molecular interactions of vasoactive systems in cardiovascular damage. J Cardiovasc Pharmacol, 2001. 38 Suppl 2: p. S7-9. 27. J., W., THE INJURED ACL. American Orthopaedic Society for Sports Medicine, 2008. 28. Lin Yu, Zheng Zhang, Huan Zhang, and Jiandong Ding, Ligament fibroblast migration on native matrices with applied DC electric field. Trans ORS, 2010. 35. 29. Marco Franchi ,Vittor ia Ott ani, Rita Stagni and Alessandr o Rugger i1, Tendon and ligament fibrillar crimps give rise to left-handed helices of collagen fibrils in both planar and helical crimps. Journal of Anatomy, 2010. 216(3): p. 301-309. 30. Simon, T.M. and D.W. Jackson, Tissue Engineered Anterior Cruciate Ligament Graft, in Musculoskeletal Tissue Regeneration, W.S. Pietrzak, Editor. 2008, Humana Press. p. 419-442. 31. Dunn, M.G., Tissue Engineering Strategies for Regeneration of the Anterior Cruciate Ligament, in Repair and Regeneration of Ligaments, Tendons, and Joint Capsule, W.R. Walsh, Editor. 2006, Humana Press. p. 279-296. 32. K. A. Elsaid, G. D. Jay, M. L. Warman, D. K. Rhee, and C. O. Chichester, Association of articular cartilage degradation and loss of boundary-lubricating ability of synovial fluid following injury and inflammatory arthritis. Arthritis & Rheumatism, 2005. 52(6): p. 1746-1755. 33. David L. Butler, Natalia Juncosa-Melvin, Gregory P. Boivin, Marc T. Galloway, Jason T. Shearn, Cynthia Gooch, Hani Awad., Functional tissue engineering for tendon repair: A multidisciplinary strategy using mesenchymal stem cells, bioscaffolds, and mechanical stimulation. Journal of Orthopaedic Research, 2008. 26(1): p. 1-9. 34. Hongbin Fan , Haifeng Liu , Siew L. Toh , James C.H. Goh, Anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold in large animal model. Biomaterials, 2009. 30(28): p. 4967-77. 35. Hongbin Fan , Haifeng Liu, Eugene J.W. Wong , Siew L. Toh , James C.H. Goh, In vivo study of anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold. Biomaterials, 2008. 29(23): p. 3324-37. 36. Haifeng Liu , Hongbin Fan , Siew L. Toh, James C.H. Goh, A comparison of rabbit mesenchymal stem cells and anterior cruciate ligament fibroblasts responses on combined silk scaffolds. Biomaterials, 2008. 29(10): p. 1443-53. 37. Wylie W. Ahmed , Tobias Wolfram , Alexandra M. Goldyn , Kristina Bruellhoff , Borja Aragu‥ e’ s Rioja ,Martin Mo‥ ller , Joachim P. Spatz b, , Taher A . Saif ,Ju‥ rgen Groll , Ralf Kemkemer, Myoblast morphology and organization on biochemically micro-patterned hydrogel coatings under cyclic mechanical strain. Biomaterials, 2010. 31(2): p. 250-8. 38. Woo Sun Shim , Jong-Ho Kim , Hungkyu Park, Kwangmeyung Kim , Ick Chan Kwon, Doo Sung Lee., Biodegradability and biocompatibility of a pH- and thermo-sensitive hydrogel formed from asulfonamide-modified poly-(epsilon-caprolactone-co-lactide)-poly(ethylene glycol)-poly(epsilon-caprolactone-co-lactide) block copolymer. Biomaterials, 2006. 27(30): p. 5178-85. 39. Lin Yu, Zheng Zhang, Huan Zhang, and Jiandong Ding, Biodegradability and biocompatibility of thermoreversible hydrogels formed from mixing a sol and a precipitate of block copolymers in water. Biomacromolecules, 2010. 11(8): p. 2169-78. 40. Guoping Chena, Takashi Sato, Hajime Ohgushi, Takashi Ushida, Tetsuya Tateishi, and Junzo Tanaka, Culturing of skin fibroblasts in a thin PLGA-collagen hybrid mesh. Biomaterials, 2005. 26(15): p. 2559-66. 41. Lee, An-Rei, The application of peptide blended electrospinning scaffold on cardiac tissue engineering Master thesis, 2009. 42. Ratner, B.D., Hoffman, A.S. and Schoen, F.J., Physicochemical Surface Modification of Materials Used in Medicine. Biomaterials Science,, 2004: p. 201–218. 43. Strobl, G.R., The Physics of Polymers Concepts for Understanding Their Structures and Behavior. Springer-Verlag, 1996. 44. Milan Mrksich, Laura E. Dike, Joe Tien, Donald E. Ingber, and George M. Whitesides., Using microcontact printing to pattern the attachment of mammalian cells to self-assembled monolayers of alkanethiolates on transparent films of gold and silver. Exp Cell Res, 1997. 235(2): p. 305-13. 45. Heather G., S. and R. Francisco F., Understanding marine mussel adhesion. Marine Biotechnology, 2007. 9(6): p. 661-681. 46. L. M. Hamming, X. W. Fan, P. B. Messersmith, and L. C. Brinson, Mimicking mussel adhesion to improve interfacial properties in composites. Composites Science and Technology, 2008. 68(9): p. 2042-2048. 47. Haeshin Lee, Shara M. Dellatore,William M. Miller,Phillip B. Messersmith, Mussel-inspired surface chemistry for multifunctional coatings. Science, 2007. 318(5849): p. 426-30. 48. Haeshin Lee, Shara M. Dellatore,William M. Miller,Phillip B. Messersmith, Single-molecule mechanics of mussel adhesion. Proceedings of the National Academy of Sciences, 2006. 103(35): p. 12999-13003. 49. Miaoer, Y., H. Jungyeon, and D. Timothy J., Role of L-3,4-dihydroxyphenylalanine in mussel adhesive proteins. Journal of the American Chemical Society, 1999. 121(24): p. 5825-5826. 50. Haeshin, L., Mussel-inspired surface chemistry for multifunctional coatings. Science, 2007. 318(5849): p. 426-430. 51. Yoo, H.S. and T.G. Park, Biodegradable polymeric micelles composed of doxorubicin conjugated PLGA-PEG block copolymer. J Control Release, 2001. 70(1-2): p. 63-70. 52. Jun Jin Yoon, Soon Ho Song, Doo Sung Lee, Tae Gwan Park, Immobilization of cell adhesive RGD peptide onto the surface of highly porous biodegradable polymer scaffolds fabricated by a gas foaming/salt leaching method. Biomaterials, 2004. 25(25): p. 5613-20. 53. Gomez, N., S. Chen, and C.E. Schmidt, Polarization of hippocampal neurons with competitive surface stimuli: contact guidance cues are preferred over chemical ligands. J R Soc Interface, 2007. 4(13): p. 223-33. 54. Wei-Bor Tsai , Yen-Chung Ting , Jung-Yen Yang ,Juin-Yih Lai , Hsuan-Liang Liu, Fibronectin modulates the morphology of osteoblast-like cells (MG-63) on nano-grooved substrates. J Mater Sci Mater Med, 2009. 20(6): p. 1367-78. 55. Marı’ a Alcaide , Marı’ a-Concepcio’ n Serrano , Raffaella Pagani , Sandra Sa’ nchez-Salcedo ,Marı’ a Vallet-Regı’ , Marı’ a-Teresa Portole’ s, Biocompatibility markers for the study of interactions between osteoblasts and composite biomaterials. Biomaterials, 2009. 30(1): p. 45-51. 56. Miroslawa El Fray, Piotr Prowans, Judit E. Puskas, and Volker Altsta‥dt.,Biocompatibility and fatigue properties of polystyrene-polyisobutylene-polystyrene, an emerging thermoplastic elastomeric biomaterial. Biomacromolecules, 2006. 7(3): p. 844-50. 57. Linge, A., Morishima, N., Kasper, M., and Barth K., Bleomycin induces caveolin-1 and -2 expression in epithelial lung cancer A549 cells. Anticancer Res. , 2007. 27. 58. Daniel Hal Davis, Constantina S. Giannoulis, Robert W. Johnson, Tejal A. Desai., Immobilization of RGD to < 1 1 1 > silicon surfaces for enhanced cell adhesion and proliferation. Biomaterials, 2002. 23(19): p. 4019-27. 59. THOMAS J. WEBSTER, P.D., P.D. LINDA S. SCHADLER, and P.D. RICHARD W. SIEGEL, and RENA BIZIOS, Ph.D., Mechanisms of Enhanced Osteoblast Adhesion on Nanophase Alumina Involve Vitronectin. TISSUE ENGINEERING, 2001. 7(3): p. 291-301. 60. M.H. Fittkau, P. Zilla, D. Bezuidenhout, M.P Lutolf, P. Human,J.A. Hubbell, N. Davies, The selective modulation of endothelial cell mobility on RGD peptide containing surfaces by YIGSR peptides. Biomaterials, 2005. 26(2): p. 167-74. 61. Hirano, Y., Cell-attachment activities of surface immobilized oligopeptides RGD, RGDS, RGDV, RGDT, and YIGSR toward five cell lines. J Biomater Sci Polym Ed, 1993. 4(3): p. 235-43. 62. B. Wojciak-Stothard, A.S.G. Curtis, W. Monaghan, M. McGrath, I. Sommer, and C. D. W. Wilkinson, Role of the cytoskeleton in the reaction of fibroblasts to multiple grooved substrata. Cell Motil Cytoskeleton, 1995. 31(2): p. 147-58. 63. Navaline L. Quach, Stefano Biressi, Louis F. Reichardt, Charles Keller,and Thomas A. Rando, Focal adhesion kinase signaling regulates the expression of caveolin 3 and beta1 integrin, genes essential for normal myoblast fusion. Mol Biol Cell, 2009. 20(14): p. 3422-35. 64. Jingsong Chen, Gregory H. Altman, Vassilis Karageorgiou, Rebecca Horan, Adam Collette,Vladimir Volloch, Tara Colabro, David L. Kaplan, Human bone marrow stromal cell and ligament fibroblast responses on RGD-modified silk fibers. J Biomed Mater Res A, 2003. 67(2): p. 559-70. 65. Shao, H.J., et al., Modulation of gene expression and collagen production of anterior cruciate ligament cells through cell shape changes on polycaprolactone/chitosan blends. Biomaterials, 2010. 31(17): p. 4695-705. 66. Kumada, Y. and S. Zhang, Significant type I and type III collagen production from human periodontal ligament fibroblasts in 3D peptide scaffolds without extra growth factors. PLoS One, 2010. 5(4): p. e10305. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38418 | - |
| dc.description.abstract | 細胞與材料表面的交互作用在組織工程的研究課題中尤為重要,許多體外研究主要在於模擬細胞在體內的週遭組織之構形來達到檢視細胞行為之目的,骨骼肌肉以及韌帶組織在人體中皆呈現束狀的線性排列,在體外研究利用次微米溝脊表面來將細胞引導成線性排列已經被證實,細胞的行為除了受到表面地形的影響以外,細胞外間質的訊號對細胞而言亦是一重要因素,在本研究中同時設計胜肽修飾表面以及次微米溝脊表面來分別代表對細胞的化學以及物理訊號,進而檢視細胞對於此兩種訊號之生長及功能表現。
在本研究中,經過含有RGD以及YIGSR序列組之胜肽改質的表面不只對骨骼肌肉細胞的生長速度與分化能力有所幫助,對細胞骨骼以及貼附蛋白的表現亦有顯著的差異,在次微米溝脊表面上所形成的成熟肌小管亦呈現與體內組織相似的線性排列,在韌帶的研究部份,經由多巴胺塗佈、以及含RGD序列組之胜肽接枝後的表面,在藉由偵測細胞數與螢光染色檢視後證明該材料對韌帶細胞的生長速度與細胞外間質分泌能力皆有所幫助,而在次微米溝脊表面的引導下,韌帶細胞的分泌能力比平坦表面上更佳,由本研究的結果指出,模擬細胞在體內的組織構形以及化學刺激,對於在體外的培養有著生長以及功能上顯著的幫助。 | zh_TW |
| dc.description.abstract | Cell-substrate interaction is a key point for tissue engineering, and many studies have focused on mimetic of the cell’s natural tissue environment to investigate the cellular behaviors. Both skeletal muscles and ligaments are constructed in bundles of fibers in human body, and the requirements for cell-guidance in aligned shape in vitro can be successful reached by the submicro-grooved pattern substrates. There are two approaches for cell behavior observation which are chemical signal, such as extracellular matrix (ECM) signals; and physical signals, such as topography effect, structural of substrates, and surrounding fluids. In this study, both of these two signals were designed to investigate the effect to cell proliferation and functionalities. The RGD- and YIGSR- containing PLGA patterned surfaces not only proved to enhance the proliferation and differentiation of cell but they also improved the focal adhesion and cytoskeleton presentation. The dopamine-coated and RGD-conjugated pattern surfaces also showed an enhancement of cellular proliferation and secretion of ECM content for ligament fibroblast, which was observed by cell number detection and fluorescent staining. The results indicated that both chemical signals from ECM-derivates and physical signals that mimetic the nature alignment shape of cell can successfully enhance cell proliferation and functionalities in vitro. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T16:32:59Z (GMT). No. of bitstreams: 1 ntu-100-R98524088-1.pdf: 9294638 bytes, checksum: 84d14e9155b86edef50e82a514b91d7f (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 誌謝 I
摘要 II Abstract III Content IV Figures VII Tables XI Chapter 1 Introduction and Literature Review 1 1.1 Extracellular matrix 1 1.2 Influence of topography and contact guidance for cell morphology and functions 3 1.3 Influence of bio-signals for cell morphology and functions 5 1.3 Skeletal muscle 6 1.3-1 Skeletal muscle tissue 6 1.3-2 Skeletal muscle tissue engineering 9 1.4 Ligament 10 1.4-1 Anterior Cruciate Ligament (ACL) 10 1.4-2 Ligament Tissue Engineering 13 1.5 Materials applied to submicro-scale contact guidance researches 14 1.5-1 Polydimethylsiloxane 14 1.5-2 Polystyrene 15 1.5-3 poly (lactic-co-glycolic acid), PLGA 16 1.6 Surface modification methods 18 1.6-1 Plasma treatment 18 1.6-2 Polymer blending 19 1.6-3 Micro-contact imprinting 19 1.6-4 Coatings 19 1.6-4-1 Mussel adhesive proteins and dopamine 20 1.7 Research motive 23 1.8 specific aims 25 1.9 Research framework (Fig.1-17) 26 Chapter 2 Materials and Methods 28 2.1 Chemicals 28 2.1-1 silicon surface cleaning 28 2.1-2 PDMS stamp fabrication and cleaning 28 2.1-3 Peptide purification and PLL grafting peptide reaction 28 2.1-4 PLGA and PLGA/PLL-peptide substrate preparation and pretreatment 29 2.1-5 skeletal myoblasts and ligament cell culture and seeding 29 2.1-6 Cellular morphology and DNA quantification 30 2.1-7 Cell immobilization and fluorescent staining 30 2.2 Experimental instrument and materials 30 2.2-1 Experimental instrument 30 2.2-2 Experimental consumables 31 2.3 Solution formula 32 2.4 Methods 35 2.4-1 Silicon substrate preparation and cleaning 35 2.4-2 PDMS molds fabrication 35 2.4-3 Peptide purification and PLL grafting peptide reaction 36 2.4-4 PLGA and PLGA/PLL-peptide substrate preparation and pretreatment 39 2.4-5 PS substrate preparation 40 2.4-6 dopamine-coated and RGD-conjugated surface preparation and pretreatment 41 2.4-6 Surface characterization 41 2.4-7 skeletal muscle cell (myoblast) culture 42 2.4-8 Anterior Cruciate Ligament cell culture 42 2.4-9 DNA quantification 43 2.4-10 Myogenic index and characterization of myotubes morphology 44 2.4-11 Collagen quantification 45 2.4-12 Collagen type I fluorescent staining 46 2.4-13 Statistic analysis 47 Chapter 3 Cellular Proliferation and Differentiation of Skeletal muscle cell on peptide-conjugated Surfaces 48 3.1 Surface characterization 48 3.1.1 The Topography of submicro-pattern and influence of base treatment time 48 3.1.2 Surface elemental analysis 49 3.1.3 Surface modification by base treatment 50 3.2 Cell experiment 51 3.2.1 Cell culture of C2C12 myoblast on the base treated PLGA and PLGA/PLL-g-RGD materials 51 3.2.2 Cytoskeletal formation and focal adhesion in C2C12 52 3.2.3 Differentiation of C2C12 on the base-treated PLGA and PLGA/PLL-g-RGD materials 53 3.2.4 Cell culture of C2C12 myoblast on the base treated PLGA and PLGA/PLL-g-YIGSR materials 54 3.2.5 Differentiation of C2C12 on the base-treated PLGA and PLGA/PLL-g-YIGSR materials 55 3.3 Discussion 56 Chapter 4 Cellular Proliferation and secretion of Anterior cruciate ligament cell on peptide-conjugated Surfaces 88 4.1 The Topography of submicro-pattern and influence of chemical treatment 88 4.2 Cellular morphology of ACL on the chemically treated polystyrene and untreated control materials 89 4.3 ACL cellular density during proliferation on the chemically treated polystyrene and untreated control materials 90 4.4 Cytoskeleton formation and focal adhesion in ACL 91 4.5 Collagen quantification 92 4.6 Fluorescent staining for Collagen type I and actin filaments 93 4.7 Discussions 94 Chapter 5 118 Conclusion and Future Work 118 Reference 121 Appendix 128 | |
| dc.language.iso | en | |
| dc.subject | 溝脊 | zh_TW |
| dc.subject | 韌帶 | zh_TW |
| dc.subject | 骨骼肌肉 | zh_TW |
| dc.subject | 胜肽 | zh_TW |
| dc.subject | 次微米 | zh_TW |
| dc.subject | ligament | en |
| dc.subject | grooved patterm | en |
| dc.subject | submicron | en |
| dc.subject | skeletal muscle | en |
| dc.subject | peptide | en |
| dc.title | 胜肽改質之次微米溝脊表面對肌肉
以及韌帶細胞之生長與功能之影響 | zh_TW |
| dc.title | Modulation of the Proliferation and Function of Skeletal Myoblast and ligament on
peptide-conjugated Submicro-grooved Surfaces | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王孟菊(Meng-Jiy Wanh),林睿哲(Jui-Che Lin),李澤民(Tzer-Min Lee) | |
| dc.subject.keyword | 次微米,溝脊,胜肽,骨骼肌肉,韌帶, | zh_TW |
| dc.subject.keyword | submicron,grooved patterm,peptide,skeletal muscle,ligament, | en |
| dc.relation.page | 129 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-07-19 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| Appears in Collections: | 化學工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-100-1.pdf Restricted Access | 9.08 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
