Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38386
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor葛煥彰
dc.contributor.authorWei-Chun Chenen
dc.contributor.author陳緯軍zh_TW
dc.date.accessioned2021-06-13T16:32:05Z-
dc.date.available2005-07-22
dc.date.copyright2005-07-22
dc.date.issued2005
dc.date.submitted2005-07-11
dc.identifier.citationReferences

Aoyanagi, O., Muramatsu, N., Ohshima, H. & Kondo, T. 1994 Electrophoretic behavior of polyA-graft-polyB-type microcapsules. J. Colloid Interface Sci. 162, 222.
Booth, F. 1954 Sedimentation potential and velocity of solid spherical particles. J. Chem. Phys. 22, 1956.
Brinkman, H. C. 1947 A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. Al, 27.
Carrique, F., Arroyo, F. J. & Delgado, A. V. 2001 Sedimentation velocity and potential in a concentrated colloidal suspension: effect of a dynamic Stern layer. Colloids Surfaces A. 195, 157.
Debye, P. & Bueche, M. 1948 Intrinsic viscosity, diffusion, and sedimentation rate of polymers in solution. J. Chem. Phys. 16, 573.
de Groot, S. R., Mazur, P. & Overbeek, J. Th. G. 1952 Nonequilibrium thermodynamics of the sedimentation potential and electrophoresis. J. Chem. Phys. 20, 1825.
Dukhin, S. S. & Derjaguin, B. V. Surface and Colloid Science (Matijevic, E., Ed.), Vol. 7. Wiley Press, New York, 1974.
Happel, J. 1958 Viscous flow in multiparticle system: slow motion of fluid relative to beds of spherical particles. AIChE J. 4, 197.
Happel, J. & Brenner, H. Low Reynolds Number Hydrodynamics. Nijhoff, The Netherlands, 1983.
Hermans, J. J. & Fujita, H. 1955 Electrophoresis of charged polymer molecules with particle free drainage. Proc. Akad. Amsterdam B58, 182.
Hill, R. J., Saville, D. A. & Russel, W. B. 2003 Electrophoresis of spherical polymer-coated colloidal particles. J. Colloid Interface Sci. 258, 56.
Kawahata, S., Ohshima, H., Muramatsu, N. & Kondo, T. 1990 Charge distribution in the surface region of human erythrocytes as estimated from electrophoretic mobility data. J. Colloid Interface Sci. 138, 182.
Keh, H. J. & Chang, Y. C. 2005 Creeping motion of an assemblage of composite spheres relative to a fluid. Colloid Polymer Sci. 283,627.
Keh, H. J. & Ding, J. M. 2000 Sedimentation velocity and potential in concentrated suspensions of charged spheres with arbitrary double layer thinkness. J. Colloid Interface Sci. 227, 540.
Keh, H. J. & Liu, Y. C. 1997 Sedimentation velocity and potential in a dilute suspension of charged composite spheres. J. Colloid Interface Sci. 195, 169.
Koplik, J., Levine, H. & Zee, A. 1983 Viscosity renormalization in the Brinkman equation. Phys. Fluids 26, 2864.
Kuwabara, S. 1959 The forces experienced by randomly distributed parallel circular cylinders or spheres in a various flow at small Reynolds numbers. J. Phys. Soc. Jpn. 14, 527.
Levine, S. & Neale, G. H. 1974 The prediction of electrokinetic phenomena within multiparticle systems I. Electrophoresis and electroosmosis. J. Colloid Interface Sci. 47, 520.
Levine, S., Neale, G. & Epstein, N. 1976 The prediction of electrokinetic phenomena within multiparticle systems II. Sedimentation potential. J. Colloid Interface Sci. 57, 424.
Liu, Y. C. & Keh, H. J. 1998a Sedimentation velocity and potential in a dilute suspension of charged porous spheres. Colloids Surf. A 140, 245.
Liu, Y. C. & Keh, H. J. 1998b Electric conductivity of a dilute suspension of charged composite spheres. Langmuir 14, 1560.
Lopez-Garcia, J. J., Grosse, C. & Horno, J. 2003 Numerical study of colloidal suspensions of soft spherical particles using the network method: 1. DC electrophoretic mobility. J. Colloid Interface Sci. 265, 327.
Masliyah, J. H. Electrokinetic Transprt Phenomena. Alberta oil sands technology and research authority, Edmonton, Alberta, Canada, 1994.
Morita, K., Muramatsu, N., Ohshima, H. & Kondo, T. 1991 Electrophoretic behavior of rat lymphocyte subpopulations. J. Colloid Interface Sci. 147, 457.
Natraj, V. & Chen, S. B. 2002 Primary electroviscous effect in a suspension of charged porous spheres. J. Colloid Interface Sci. 251, 200.
Neale, G., Epstein, N. & Nader, W. 1973 Creeping flow relative to permeable spheres. Chem. Eng. Sci. 28, 1865.
Ohshima, H., Healy, T. W., White, L. R. & O’Brien, R. W. 1984 Sedimentation velocity and potential in a dilute suspension of charged spherical colloidal particles. J. Chem. Soc., Faraday Trans. 2 80, 1299.
Ohshima, H. 1998 Sedimentation potential in a concentrated suspension of spherical colloidal particles. J. Colloid Interface Sci. 208, 295.
Ohshima, H. 2000 On the general expression for the electrophoretic mobility of a soft particle. J. Colloid Interface Sci. 228, 190.
Ohshima, H. 2000 Sedimentation potential and velocity in a concentrated suspension of soft particles. J. Colloid Interface Sci. 229, 140.
Saville, D. A. 1982 The sedimentation potential in a dilute suspension. Adv. Colloid Interface. Sci. 16, 267.
Stigter, D. 1980 Sedimentation of highly charged colloidal spheres. J. Phys. Chem. 84, 2758.
van de Ven, T. G. M. Colloidal Hydrodynamics. Academic Press, London, 1989.
Wiersema, P. H., Loeb, A. L. & Overbeek, J. Th. G. 1966 Calculation of the electrophoretic mobility of a spherical colloid particle. J. Colloid Interface Sci. 22, 78.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38386-
dc.description.abstract本論文以理論探討帶有固定電荷的多孔球形粒子在電解質溶液中形成懸浮系統所進行之沈降運動。解析的過程中,吾人使用單元小室模型,考慮在任意電雙層厚度但低電位的條件下,透過求解Poisson-Boltzmann 方程式和修正過的Stokes 方程式,利用適當的邊界條件,以求得帶電多孔粒子在對稱性電解質溶液中之平均沈降速度以及沉降電位。由於所考慮的系統相對於平衡狀態只受到一微小擾動,可將原本交互聯立的非線性電動力微分方程式轉化為線性的問題。配合正規微擾分析法,得到小室內電解質溶液中的電位分佈與流速分佈。
再藉由平衡作用於粒子的重力、電力、和流體阻力等三種力後,可以求得帶電粒子的沈降速度以及懸浮液之沉降電位(電泳可動度)的解析形式表示式。結果顯示:粒子內部的水力摩擦環節與固定電荷的存在,對粒子的沈降速度以及懸浮液之沉降電位(電泳可動度)各有相等的影響;另外,粒子在對稱電解質溶液中的濃度變化對沈降速度以及沉降電位(電泳可動度)也有顯著影響。
zh_TW
dc.description.abstractThe body-force-driven migration in a homogeneous suspension of polyelectrolyte molecules or charged flocs in an electrolyte solution is analyzed. The model used for the particle is a porous sphere in which the density of the hydrodynamic frictional segments, and therefore also that of the fixed charges, is constant. The effects of particle interactions are taken into account by employing a unit cell model. The overlap of the electric double layers of adjacent particles is allowed and the relaxation effect in the double layer surrounding each particle is considered. The electrokinetic equations which govern the electrostatic potential profile, the ionic concentration (or electrochemical potential energy) distributions, and the fluid velocity field inside and outside the porous particle in a unit cell are linearized by assuming that the system is only slightly distorted from equilibrium. Using a regular perturbation method, these linearized equations are solved for a symmetrically charged electrolyte with the density of the fixed charges as the small perturbation parameter.

An analytical expression for the settling velocity of the charged porous sphere is obtained from a balance among its gravitational, electrostatic, and hydrodynamic forces. A closed-form formula for the sedimentation potential in a suspension of identical charged porous spheres is also derived by using the requirement of zero net electric current. Our results indicate that the effects of the overlap of the adjacent double layers and of the relaxation of the diffuse ions are quite significant, even for the case of thin double layers.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T16:32:05Z (GMT). No. of bitstreams: 1
ntu-94-R92524086-1.pdf: 737789 bytes, checksum: f861ffa352b8e5dd6c6fd90a100990d7 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontentsTable of Contents
Chapter 1 Introduction 1

1.1 Background 1
1.2 Purpose of this thesis 4

Chapter 2 Analysis 6

2.1 Basic electrokinetic equations 6
2.2 Solution of the electrokinetic equations for symmetric electrolytes 12
2.3 Sedimentation velocity 15
2.4 Sedimentation potential 17

Chapter 3 Results and discussion 20

3.1 Sedimentation velocity 20
3.2 Sedimentation potential 29

Chapter 4 Concluding Remarks 37

Notation 39
References 42
Appendix 46
Biographical Sketch 54
dc.language.isoen
dc.subject沉降電位zh_TW
dc.subject沉降速度zh_TW
dc.subjectSedimentation velocityen
dc.subjectSedimentation potentialen
dc.title帶電球形多孔粒子懸浮液之沉降速度與沉降電位zh_TW
dc.titleSedimentation velocity and sedimentation potential in concentrated suspensions of charged porous spheresen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee曹恒光,張有義
dc.subject.keyword沉降速度,沉降電位,zh_TW
dc.subject.keywordSedimentation velocity,Sedimentation potential,en
dc.relation.page54
dc.rights.note有償授權
dc.date.accepted2005-07-11
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
Appears in Collections:化學工程學系

Files in This Item:
File SizeFormat 
ntu-94-1.pdf
  Restricted Access
720.5 kBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved