請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3837
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 戴桓青(Tai, Hwan-Ching) | |
dc.contributor.author | Ching-Chieh Shen | en |
dc.contributor.author | 沈敬傑 | zh_TW |
dc.date.accessioned | 2021-05-13T08:37:22Z | - |
dc.date.available | 2018-08-02 | |
dc.date.available | 2021-05-13T08:37:22Z | - |
dc.date.copyright | 2016-08-02 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-07-28 | |
dc.identifier.citation | 1 Nicholson, J. K. and Lindon, J. C. Systems biology: Metabonomics. Nature 455, 1054-1056 (2008)
2 Goodacre, R. Metabolomics – the way forward. Metabolomics 1, 1-2 (2005) 3 Nicholson, J. K., Lindon, J. C. and Holmes, E. 'Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29 (1999) 4 Oliver, S. G. Yeast as a navigational aid in genome analysis. Microbiology 143, 1483-1487 (1997) 5 Dettmer, K., Aronov, P. A. and Hammock, B. D. Mass spectrometry-based metabolomics. Mass Spectrometry Reviews 26, 51-78 (2007) 6 Nicholson, J. K. and Wilson, I. D. Opinion: Understanding 'Global' Systems Biology: Metabonomics and the Continuum of Metabolism. Nature Reviews Drug Discovery 2, 668-676 (2003) 7 Harrigan, G. G. et al. Application of high-throughput Fourier-transform infrared spectroscopy in toxicology studies: contribution to a study on the development of an animal model for idiosyncratic toxicity. Toxicology Letters 146, 197-205 (2004) 8 Fukushima, T., Usui, N., Santa, T. and Imai, K. Recent progress in derivatization methods for LC and CE analysis. Journal of Pharmaceutical and Biomedical Analysis 30, 1655-1687 (2003) 9 Santa, T. et al. Synthesis of benzofurazan derivatization reagents for carboxylic acids in liquid chromatography/electrospray ionization–tandem mass spectrometry. Biomedical Chromatography 21, 1207-1213 (2007) 10 Santa, T. et al. Synthesis of 4-[2-(N,N-dimethylamino)ethylaminosulfonyl]-7-N-methylhydrazino-2,1,3-benzoxadiazole (DAABD-MHz) as a derivatization reagent for aldehydes in liquid chromatography/electrospray ionization–tandem mass spectrometry. Biomedical Chromatography 22, 115-118 (2008) 11 Matsuura, K. and Takashina, H. Effects of functional groups of acrylic acid derivatives as derivatization reagents for thiol compounds on molecular ion responses in electrospray ionization-mass spectrometry. Journal of Mass Spectrometry 33, 1199-1208 (1998) 12 Higashi, T. and Shimada, K. Derivatization of neutral steroids to enhance their detection characteristics in liquid chromatography mass spectrometry. Analytical and Bioanalytical Chemistry 378, 875-882 (2004) 13 Xu, F. et al. Quantification of fudosteine in human plasma by high-performance liquid chromatography-electrospray ionization mass spectrometry employing precolumn derivatization with 9-fluorenylmethyl chloroformate. Journal of Mass Spectrometry 41, 685-692 (2006) 14 Ilisz, I., Berkecz, R. and Péter, A. Application of chiral derivatizing agents in the high-performance liquid chromatographic separation of amino acid enantiomers: A review. Journal of Pharmaceutical and Biomedical Analysis 47, 1-15 (2008) 15 Gao, S., Zhang, Z. and Karnes, H. Sensitivity enhancement in liquid chromatography/atmospheric pressure ionization mass spectrometry using derivatization and mobile phase additives. Journal of Chromatography B 825, 98-110 (2005) 16 Eggink, M. et al. Development of a selective ESI-MS derivatization reagent: synthesis and optimization for the analysis of aldehydes in biological mixtures. Analytical Chemistry 80, 9042-9051 (2008) 17 Liu, D. Q. and Hop, C. E. C. A. Strategies for characterization of drug metabolites using liquid chromatography–tandem mass spectrometry in conjunction with chemical derivatization and on-line H/D exchange approaches. Journal of Pharmaceutical and Biomedical Analysis 37, 1-18 (2005) 18 Srinivas, N. R. Sensitivity enhancement in tandem liquid chromatographic mass spectrometric assays by summation of two transition ion pairs - perspectives. Journal of Separation Science 32, 483-486 (2009) 19 Honda, A. et al. MPAI (Mass Probes Aided Ionization) Method for Total Analysis of Biomolecules by Mass Spectrometry. Analytical Sciences 23, 11-15 (2007) 20 Tsukamoto, Y. et al. A further study on the combined use of internal standard and isotope-labeled derivatization reagent for expansion of linear dynamic ranges in liquid chromatography–electrospray mass spectrometry. Biomedical Chromatography 20, 1049-1055 (2006) 21 Callejón, R. M., Troncoso, A. M. and Morales, M. L. Determination of amino acids in grape-derived products: A review. Talanta 81, 1143-1152 (2010). 22 Anderegg, R. J. Derivatization in mass spectrometry: Strategies for controlling fragmentation. Mass Spectrometry Reviews 7, 395-424 (1988) 23 Koller, M. and Eckert, H. Derivatization of peptides for their determination by chromatographic methods. Analytica Chimica Acta 352, 31-59 (1997) 24 Roth, M. Fluorescence reaction for amino acids. Analytical Chemistry 43, 880-882 (1971) 25 Simons, S. S. and Johnson, D. F. The structure of the fluorescent adduct formed in the reaction of o-phthalaldehyde and thiols with amines. Journal of the American Chemical Society 98, 7098-7099 (1976) 26 Simons, S. S. and Johnson, D. F. Preparation of a stable, fluorescent 1-alkylthio-2-alkylisoindole. Chemical Communications, 374-374 (1977) 27 Jacobs, W. A., Leburg, M. W. and Madaj, E. J. Stability of o-phthalaldehyde-derived isoindoles. Analytical Biochemistry 156, 334-340 (1986) 28 Kucera, P. and Umagat, H. Design of a post-column fluorescence derivatization system for use with microbore columns. Journal of Chromatography A 255, 563-579 (1983) 29 Drescher, D. G. and Lee, K. S. Extraction of fixed, stained protein bands form gels for micro amino acid analysis using o-phthaldialdehyde. Analytical Biochemistry 84, 559-569 (1978) 30 Benson, J. R. and Hare, P. E. O-phthalaldehyde: fluorogenic detection of primary amines in the picomole range. Comparison with fluorescamine and ninhydrin. Proceedings of the National Academy of Sciences of the United States of America 72, 619-622 (1975) 31 Hou, Y. et al. Analysis of l-homoarginine in biological samples by HPLC involving precolumn derivatization with o-phthalaldehyde and N-acetyl-l-cysteine. Amino Acids 47, 2005-2014 (2015) 32 Sanger, F. The free amino groups of insulin. The Biochemical Journal 39, 507-515 (1945) 33 Zahn, V. H. and Meienhofer, J. Reaktionen von 1,5-difluor-2,4-dinitrobenzol mit insulin 2. Mitt. Versuche mit insulin. Die Makromolekulare Chemie 26, 153-166 (1958) 34 Marfey, P. S., Nowak, H., Uziel, M. and Yphantis, D. A. Reaction of bovine pancreatic ribonuclease a with 1,5-difluoro-2,4-dinitrobenzene: i. Preparation of monomeric intramolecularly bridged derivatives. Journal of Biological Chemistry 240, 3264-3269 (1965) 35 Marfey, P. S., Uziel, M. and Little, J. Reaction of bovine pancreatic ribonuclease a with 1,5-difluoro-2,4-dinitrobenzene: ii. Structure of an intramolecularly bridged derivative. Journal of Biological Chemistry 240, 3270-3275 (1965) 36 Marfey, P. Determination of D-amino acids. II. Use of a bifunctional reagent, 1,5-difluoro-2,4-dinitrobenzene. Carlsberg Research Communications 49, 591-596 (1984) 37 Bhushan, R. and Brückner, H. Marfey's reagent for chiral amino acid analysis: a review. Amino Acids 27, 231-247 (2004) 38 Kochhar, S. and Christen, P. Amino acid analysis by high-performance liquid chromatography after derivatization with 1-fluoro-2,4-dinitrophenyl-5-l-alanine amide. Analytical Biochemistry 178, 17-21 (1989) 39 Carpino, L. A. and Han, G. Y. 9-Fluorenylmethoxycarbonyl amino-protecting group. The Journal of Organic Chemistry 37, 3404-3409 (1972) 40 Moye, H. A. and Boning, A. J. A Versatile Fluorogenic Labelling Reagent for Primary and Secondary Amines: 9-Fluorenylmethyl Chloroformate. Analytical Letters 12, 25-35 (1979) 41 Kushnir, M. M., Urry, F. M., Frank, E. L., Roberts, W. L. and Shushan, B. Analysis of catecholamines in urine by positive-ion electrospray tandem mass spectrometry. Clinical Chemistry 48, 323-331 (2002) 42 Chang, J. Y., Knecht, R. and Braun, D. G. Amino acid analysis in the picomole range by precolumn derivatization and high-performance liquid chromatography. Methods In Enzymology 91, 41-48 (1983) 43 Tzeng, M.-C. A sensitive, rapid method for monitoring sodium dodecyl sulfate-polyacrylamide gel electrophoresis by chromophoric labeling. Analytical Biochemistry 128, 412-414 (1983) 44 Chang, J.-Y., Martin, P., Bernasconi, R. and Braun, D. G. High-sensitivity amino acid analysis: measurement of amino acid neurotransmitter in mouse brain. FEBS Letters 132, 117-120 (1981) 45 Weber, G. Polarization of the fluorescence of macromolecules. II. Fluorescent conjugates of ovalbumin and bovine serum albumin. The Biochemical Journal 51, 155-167 (1952) 46 Hartley, B. S. and Massey, V. The active centre of chymotrypsin. Biochimica et Biophysica Acta 21, 58-70 (1956) 47 Guo, K. and Li, L. Differential 12C-/13C-isotope dansylation labeling and fast liquid chromatography/mass spectrometry for absolute and relative quantification of the metabolome. Analytical Chemistry 81 (2009) 48 Bergmann, F. and Pfleiderer, W. Nucleotides. Part XLII. The 2-dansylethoxycarbonyl(=2-{[5-(dimethylamino)naphthalen-1-yl]sulfonyl}ethoxy- carbonyl; dnseoc) group for protection of the 5?-hydroxy function in oligoribonucleotide synthesis. Helvetica Chimica Acta 77, 481-501 (1994) 49 Edman, P. A method for the determination of amino acid sequence in peptides. Archives of Biochemistry 22, 475-475 (1949) 50 Koop, D. R., Morgan, E. T., Tarr, G. E. and Coon, M. J. Purification and characterization of a unique isozyme of cytochrome P-450 from liver microsomes of ethanol-treated rabbits. The Journal of Biological Chemistry 257, 8472-8480 (1982) 51 Bidlingmeyer, B. A., Cohen, S. A. and Tarvin, T. L. Rapid analysis of amino acids using pre-column derivatization. Journal of Chromatography 336, 93-104 (1984) 52 Heinrikson, R. L. and Meredith, S. C. Amino acid analysis by reverse-phase high-performance liquid chromatography: Precolumn derivatization with phenylisothiocyanate. Analytical Biochemistry 136, 65-74 (1984) 53 Onisko, B. et al. Mass spectrometric detection of attomole amounts of the prion protein by nanoLC/MS/MS. Journal of the American Society for Mass Spectrometry 18 (2007) 54 De Montigny, P. et al. Naphthalene-2,3-dicarboxyaldehyde/cyanide ion: a rationally designed fluorogenic reagent for primary amines. Analytical Chemistry 59 (1987) 55 Matuszewski, B. K., Givens, R. S., Srinivasachar, K., Carlson, R. G. and Higuchi, T. N-substituted 1-cyanobenz[f]isoindole: evaluation of fluorescence efficiencies of a new fluorogenic label for primary amines and amino acids. Analytical Chemistry 59, 1102-1105 (1987) 56 Shou, M., Smith, A. D., Shackman, J. G., Peris, J. and Kennedy, R. T. In vivo monitoring of amino acids by microdialysis sampling with on-line derivatization by naphthalene-2,3-dicarboxyaldehyde and rapid micellar electrokinetic capillary chromatography. Journal of Neuroscience Methods 138, 189-197 (2004) 57 Huang, H.-M. and Lin, C.-H. Methanol plug assisted sweeping-micellar electrokinetic chromatography for the determination of dopamine in urine by violet light emitting diode-induced fluorescence detection. Journal of Chromatography B 816, 113-119 (2005) 58 Sauvinet, V. et al. In vivo simultaneous monitoring of γ-aminobutyric acid, glutamate, andL-aspartate using brain microdialysis and capillary electrophoresis with laser-induced fluorescence detection: Analytical developments andin vitro/in vivo validations. Electrophoresis 24, 3187-3196 (2003) 59 Quan, Z. and Liu, Y.-M. Capillary electrophoretic separation of glutamate enantiomers in neural samples. Electrophoresis 24, 1092-1096 (2003) 60 Beale, S. C., Hsieh, Y. Z., Wiesler, D. and Novotny, M. Application of 3-(2-furoyl)quinoline-2-carbaldehyde as a fluorogenic reagent for the analysis of primary amines by liquid chromatography with laser-induced fluorescence detection. Journal of Chromatography 499, 579-587 (1990) 61 Pinto, D., Arriaga, E. A., Schoenherr, R. M., Chou, S. S.-H. and Dovichi, N. J. Kinetics and apparent activation energy of the reaction of the fluorogenic reagent 5-furoylquinoline-3-carboxaldehyde with ovalbumin. Journal of Chromatography B 793, 107-114 (2003) 62 Stoyanov, A. V., Ahmadzadeh, H. and Krylov, S. N. Heterogeneity of protein labeling with a fluorogenic reagent, 3-(2-furoyl)quinoline-2-carboxaldehyde. Journal of Chromatography B 780, 283-287 (2002) 63 Chen, Z., Wu, J., Baker, G. B., Parent, M. and Dovichi, N. J. Application of capillary electrophoresis with laser-induced fluorescence detection to the determination of biogenic amines and amino acids in brain microdialysate and homogenate samples. Journal of Chromatography A 914, 293-298 (2001) 64 Kraly, J. R. et al. Reproducible two-dimensional capillary electrophoresis analysis of Barrett's esophagus tissues. Analytical Chemistry 78, 5977-5986 (2006) 65 Traut, R. R. et al. Methyl 4-mercaptobutyrimidate as a cleavable crosslinking reagent and its application to the Escherichia coli 30S ribosome. Biochemistry 12, 3266-3273 (1973) 66 Jue, R., Lambert, J. M., Pierce, L. R. and Traut, R. R. Addition of sulfhydryl groups of Escherichia coli ribosomes by protein modification with 2-iminothiolane (methyl 4-mercaptobutyrimidate). Biochemistry 17, 5399-5406 (1978) 67 Yang, W.-C., Mirzaei, H., Liu, X. and Regnier, F. E. Enhancement of amino acid detection and quantification by electrospray ionization mass spectrometry. Analytical Chemistry 78, 4702-4708 (2006) 68 Münchbach, M., Quadroni, M., Miotto, G. and James, P. Quantitation and Facilitated de Novo Sequencing of Proteins by Isotopic N-Terminal Labeling of Peptides with a Fragmentation-Directing Moiety. Analytical Chemistry 72, 4047-4057 (2000) 69 Yang, W.-C., Regnier, F. E., Sliva, D. and Adamec, J. Stable isotope-coded quaternization for comparative quantification of estrogen metabolites by high-performance liquid chromatography-electrospray ionization mass spectrometry. Journal of chromatography. B 870, 233-240 (2008) 70 Weigele, M., De Bernardo, S., Leimgruber, W., Cleeland, R. and Grunberg, E. Fluorescent labeling of proteins. A new methodology. Biochemical and Biophysical Research Communications 54, 899-906 (1973) 71 Castell, J. V., Cervera, M. and Marco, R. A convenient micromethod for the assay of primary amines and proteins with fluorescamine. A reexamination of the conditions of reaction. Analytical Biochemistry 99, 379-391 (1979) 72 Tata, S. J. and Moir, G. F. J. Fluorescamine as a reagent for location of proteins after electrophoresis in starch gel or on paper. Analytical Biochemistry 70, 495-498 (1976) 73 Miedel, M. C., Hulmes, J. D. and Pan, Y.-C. E. The use of fluorescamine as a detection reagent in protein microcharacterization. Journal of Biochemical and Biophysical Methods 18, 37-52 (1989) 74 Felix, A. M. and Jimenez, M. H. Usage of fluorescamine as a spray reagent for thin-layer chromatography. Journal of Chromatography A 89, 361-364 (1974) 75 Udenfriend, S. et al. Fluorescamine: a reagent for assay of amino acids, peptides, proteins, and primary amines in the picomole range. Science (New York, N.Y.) 178, 871-872 (1972) 76 Tu, S.-I. and Grosso, L. Fluorescent labeling of proteins in sodium dodecyl sulfate complexes with fluorescamine. Biochemical and Biophysical Research Communications 72, 9-14 (1976) 77 Sprinzl, M. and Faulhammer, H. G. Participation of X47-fluorescamine modified E. coli tRNAs in in vitro protein biosynthesis. Nucleic Acids Research 5, 4837-4853 (1978) 78 Moore, S. and Stein, W. H. Photometric ninhydrin method for use in the chromatography of amino acids. The Journal of Biological Chemistry 176, 367-388 (1948) 79 Moore, S. and Stein, W. H. A modified ninhydrin reagent for the photometric determination of amino acids and related compounds. The Journal of Biological Chemistry 211, 907-913 (1954) 80 Cavins, J. F. F., M. Automatic integration and computationof amino acid analyses. Cereal Chem (1968) 81 Dent, C. E. A study of the behaviour of some sixty amino-acids and other ninhydrin-reacting substances on phenol-;collidine' filter-paper chromatograms, with notes as to the occurrence of some of them in biological fluids. The Biochemical Journal 43, 169-180 (1948) 82 Griffin, M. and Wilson, J. Detection of ε (γ-glutamyl) lysine. Molecular and Cellular Biochemistry 58, 37-49 (1984) 83 Cashman, P. J., Beede, J. D. and Thornton, J. I. Ninhydrin: A Color Test for the Differentiation of Phenethylamines of Abuse. Journal of the Forensic Science Society 19, 137-141 (1979) 84 Ryan, E. A. and Kropinski, A. M. Separation of amino sugars and related compounds by two-dimensional thin-layer chromatography. Journal of Chromatography A 195, 127-132 (1980) 85 Boppana, V. K. and Rhodes, G. R. High-performance liquid chromatographic determination of an arginine-containing octapeptide antagonist of vasopressin in human plasma by means of a selective post-column reaction with fluorescence detection. Journal of Chromatography A 507, 79-84 (1990) 86 Wimalasena, R., Audus, K. L. and Stobaugh, J. F. Rapid optimization of the post-column fluorogenic ninhydrin reaction for the HPLC-based determination of bradykinin and related fragments. Biomedical Chromatography 17, 165-171 (2003) 87 LaPorte, G. M. and Ramotowski, R. S. The effects of latent print processing on questioned documents produced by office machine systems utilizing inkjet technology and toner. Journal of Forensic Sciences 48, 658-663 (2003) 88 Kyte, J. and Doolittle, R. F. A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology 157, 105-132 (1982) 89 Nakano, T., Takewaki, K., Yade, T. and Okamoto, Y. Dibenzofulvene, a 1,1-Diphenylethylene Analogue, Gives a π-Stacked Polymer by Anionic, Free-Radical, and Cationic Catalysts. Journal of the American Chemical Society 123 (2001) 90 Nakano, T. Synthesis, structure and function of π-stacked polymers. Polymer Journal 42, 103-123 (2010) 91 International Conference On Harmonization (ICH) Of Technical Requirements for Registration of Pharmaceuticals for Human Use, Validation of analytical procedures: Text and Methodology. ICH-Q2(R1), Geneva (1996). 92 Jamindar, D. and Gutheil, W. G. A liquid chromatography–tandem mass spectrometry assay for Marfey’s derivatives of l-Ala, d-Ala, and d-Ala-d-Ala: Application to the in vivo confirmation of alanine racemase as the target of cycloserine in Escherichia coli. Analytical Biochemistry 396, 1-7 (2010) 93 Uutela, P., Ketola, R. A., Piepponen, P. and Kostiainen, R. Comparison of different amino acid derivatives and analysis of rat brain microdialysates by liquid chromatography tandem mass spectrometry. Analytica Chimica Acta 633, 223-231 (2009) 94 Fox, S. D., Falk, R. T., Veenstra, T. D. and Issaq, H. J. Quantitation of free and total bisphenol A in human urine using liquid chromatography-tandem mass spectrometry. Journal of Separation Science 34, 1268-1274 (2011) 95 Wu, M. et al. Liquid chromatography/mass spectrometry methods for measuring dipeptide abundance in non-small-cell lung cancer. Rapid Communications in Mass Spectrometry 27, 2091-2098 (2013) 96 Luo, K., Gao, Q. and Hu, J. Derivatization method for sensitive determination of 3-hydroxybenzo[a]pyrene in human urine by liquid chromatography–electrospray tandem mass spectrometry. Journal of Chromatography A 1379, 51-55 (2015) 97 Chen, Y.-H., Shih, L.-L., Liou, S.-E. and Chen, C.-C. Analysis of Dabsyl-Cl Derivated Amino Acids by High Performance Liquid Chromatography and Tandem Mass Spectrometry. Food Science and Technology Research 9, 276-282 (2003) 98 Lacroix, C. and Saussereau, E. Fast liquid chromatography/tandem mass spectrometry determination of cannabinoids in micro volume blood samples after dabsyl derivatization. Journal of Chromatography B 905, 85-95 (2012) 99 Holčapek, M., Volná, K. and Vaněrková, D. Effects of functional groups on the fragmentation of dyes in electrospray and atmospheric pressure chemical ionization mass spectra. Dyes and Pigments 75, 156-165 (2007) 100 Bruぴckner, H., Langer, M., Lupke, M., Westhauser, T. and Godel, H. Liquid chromatographic determination of amino acid enantiomers by derivatization with o-phthaldialdehyde and chiral thiols Applications with reference to food science. Journal of Chromatography A 697, 229-245 (1995) | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3837 | - |
dc.description.abstract | 代謝體學是後基因體世代的新興研究領域,複雜生物樣品的代謝體分析可以反映生物系統內即時的反應狀況,目前估計人體血漿有超過10000種可定量的代謝物,而目前研究代謝體的分析工具主要為液相層析質譜儀。但不是每種代謝物都適合用液相層析質譜分析,而將代謝物做適當的衍生化可以增強分析物的分離效果、游離效率、並利用二次質譜碎裂的圖譜做身份鑑定。在代謝體中許多分子具有胺類官能基,其中包含胺基酸及其衍生物和胜肽,經過文獻搜尋探討,我們鎖定五種胺基衍生化試劑:OPA、Dansyl、Dabsyl、Fmoc-Cl、Marfey試劑來進行分析比對。
在這份研究中,我們用液相層析質譜配合螢光偵測來比較不同胺基衍生化試劑的相對優劣性,藉由在相同儀器和最佳化的條件下,來找出這些試劑適合的實驗條件與實驗目的。我們比較了酸鹼性對螢光、紫外/可見光強度影響、產物疏水性、揮發性鹽類對層析分離效果及質譜游離效率的影響,還有不同衍生化試劑的二次質譜碎裂的能量及碎裂後產生的離子。在過去的文獻中,尚未建立如此系統性的研究。 在這份研究中,我們選擇三種常見的動向組成0.1%甲酸水溶液 (pH 2.6)、2 mM 醋酸銨水溶液 (pH 5)、2 mM 碳酸銨水溶液 (pH 8)當作共同的沖提條件。從實驗結果我們觀察到下列的相對強弱,紫外光可見光吸收 (Dansyl > Fmoc > Marfey > Dabsyl > OPA)、螢光強度 (Fmoc > OPA > Dansyl)、疏水性 (Dabsyl > Fmoc > Dansyl ≈ Marfey ≈ OPA)、游離效果 (Dansyl ≈ Dabsyl > OPA ≈ Fmoc > Marfey)。Fmoc和Dansyl在碰撞誘導碎裂室中都會產生固定荷質比的特徵離子,但OPA和Marfey則是產生失去固定的碎片的特徵離子,Dabsyl碎裂的位置太多因而產生複雜的質譜圖。 經過系統性的比較試劑間的優劣性我們發現Dansyl適合代謝體研究,包含螢光定量和多重反應偵測,Fmoc和Dansyl一樣,都是應用潛力比較大的衍生化試劑。OPA也是泛用的螢光試劑,OPA反應的條件可以再優化,未來值得更深入的探討和研究,而Marfey試劑主要可以應用在鏡像異構物的分離。Dabsyl的應用就比較狹隘,必須視分析目的而定,因為其分子碎裂能裂太高,從這份研究中得到的不同試劑間的比較可以當作一項參考工具,幫助未來想投入突觸代謝體學研究的人,在設計實驗上更順利。 | zh_TW |
dc.description.abstract | The study of complex metabolites in biological samples is a rapidly advancing field. Tremendous progress has been made using advanced liquid chromatography-tandem mass spectrometry (LC-MS/MS) techniques to analyze human metabolomes. It is now believed that human serum alone contains over 10,000 quantifiable metabolites. However, there is no universal LC-MS/MS condition that suits all metabolites. Instead of constantly tuning LC-MS conditions for different metabolites, a better approach is to derivatize metabolites to give them more desirable properties such as better LC separation efficiency, enhanced ionization efficiency, and favorable MS/MS fragmentation patterns.
In this study we focus on identifying optimal derivatization methods for amine-containing metabolites in LC-MS/MS analysis coupled with fluorescence detection. These metabolites may include amino acids, their derivatives, and peptides, which may function as hormones, neurotransmitters, and other signaling molecules in the body. We surveyed a wide variety of amine-derivatization regents and narrowed the candidate list down to five: o-phthlaldehyde (OPA), Dansyl-Cl, Dabsyl-Cl, Fmoc-Cl and Marfey’s reagent. We compared them in terms of absorbance intensity, product hydrophobicity, fluorescence intensity and pH dependence, separation efficiency in reversed-phase LC, ionization efficiency and salt dependence, as well as MS/MS fragmentation energy and fingerprint. To our knowledge such detailed comparisons of amine derivatization methods have never been carried out before. In this study we compared three general aqueous mobile phase compositions: 0.1% FA (pH 2.6), 2 mM AA (pH 5), 2 mM ABC (pH 8). Under respective optimal eluent conditions, we have observed these general trend in terms of absorbance intensity (Dansyl > Marfey > Fmoc > Dabsyl > OPA), fluorescence intensity (Fmoc > OPA > Dansyl), hydrophobicity (Dabsyl > Fmoc > Dansyl ≈ Marfey ≈ OPA), and ionization efficiency (Dansyl ≈ Dabsyl > OPA ≈ Fmoc > Marfey). Fmoc and Dansyl exhibit characteristic product ions with fixed m/z in collision-induced dissociation cell, while OPA and Marfey show characteristic fixed mass loss in fragment product ions. Dabsyl fragments at many positions to create a complex MS/MS spectrum. After extensive comparisons, we found that Dansyl shows the greatest potential for a universal derivatization method for metabolomics studies, especially for quantitation by fluorescence and multiple-reaction monitoring. Fmoc is a similarly useful reagent and has the advantage of low collision energy. OPA is a versatile fluorogenic reagent and its chemistry can be fine-tuned using different thiol molecules, which is worth further investigating and optimizing. Marfey’s reagent is useful for the chromatographic separation of enantiomers due to its chiral nature. Dabsyl is very difficult to fragment in MS/MS experiemnts, which may be a strength or a weakness depending on analytical goals. The performance comparisons between different reagents derived from this study can serve as a guide for designing better metabolomics experiments under different contexts. | en |
dc.description.provenance | Made available in DSpace on 2021-05-13T08:37:22Z (GMT). No. of bitstreams: 1 ntu-105-R03223189-1.pdf: 8284933 bytes, checksum: d96d6396af146fe3f6c9f4f517184ca0 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iv Table of Contents vi LIST OF FIGURES ix LIST OF TABLES xii Abbreviations xiii Chapter 1 INTRODUCTION 1 1.1 Introduction to metabolomics 1 1.2 LC-MS in metabolomics research 5 1.3 Pre-column derivatization method 9 1.4 Post-column derivatization method 21 1.5 Derivatization-reagent and amino acids selection 25 1.5.1 Derivatization-reagent selection criteria 25 1.5.2 Amino aicds selection criteria 25 1.6 Aim of this study 26 Chapter 2 RESULTS AND DISUSSION 27 2.1 UV/Vis absorbance and Fluorescence intensity assay 27 2.1.1 UV/Vis absorbance assay 27 2.1.2 Fluorescence intensity assay 28 2.1.3 Limit of detection of Fmoc method 30 2.2 Chromatographic performance 31 2.2.1 Retention time (hydrophobicity) 31 2.2.2 Separation performance assay 32 2.3 Ionization efficiency of different derivatization reagents 39 2.4 Tandem mass spectroscopy 41 2.4.1 Fragmentation energy and fragmentation pattern 41 2.5 Discussion 50 2.5.1 General description of five derivitization reagent at its optimal condition 50 2.5.2 Practical considerations 56 Chapter 3 CONCLUSION 59 Chapter 4 MATERIALS AND METHODS 61 4.1 Materials 61 4.1.1 Equipment 61 4.1.2 Reagents 61 4.1.3 Amino acid standards 62 4.1.4 Derivatizing reagent 62 4.2 Methods 63 4.2.1 Derivatization protocol for five different reagents 63 4.2.2 MS/MS experiment 65 4.2.3 LC-MS/MS experiment 64 4.2.4 LOD and LOQ for Fmoc method 66 REFERENCE 67 Appendix 80 Working protocol for derivatizing amino acid 80 1.1.1 Derivatization procedure of OPA method 80 1.1.2 Derivatization procedure of Fmoc method 81 1.1.3 Derivatization procedure of Dansyl method 82 1.1.4 Derivatization procedure of Marfey method 83 1.1.5 Derivatization procedure of Dabsyl method 84 | |
dc.language.iso | en | |
dc.title | 五種偵測含胺類代謝物的衍生化方法之比較 | zh_TW |
dc.title | Comparison of five derivatization methods for the detection of amine-containing metabolites | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 廖尉斯(Liao, Wei-Ssu),徐丞志(Hsu, Cheng-Chih) | |
dc.subject.keyword | 代謝體學,液相層析串聯質譜,胺基酸,衍生化,比較研究, | zh_TW |
dc.subject.keyword | metabolomics,liquid-chromatography tandem mass spectroscopy,amino acid,derivatization,comparative research, | en |
dc.relation.page | 84 | |
dc.identifier.doi | 10.6342/NTU201601534 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2016-07-29 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 化學研究所 | zh_TW |
顯示於系所單位: | 化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf | 8.09 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。