請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38367完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 馬劍清 | |
| dc.contributor.author | Yi-Lin Chen | en |
| dc.contributor.author | 陳怡玲 | zh_TW |
| dc.date.accessioned | 2021-06-13T16:31:34Z | - |
| dc.date.available | 2005-07-20 | |
| dc.date.copyright | 2005-07-20 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-11 | |
| dc.identifier.citation | 參考文獻
[1] Sachse, W. and Y.-H. Pao, On the Determination of Phase and Group Velocities of Dispersive Waves in Solids, Journal of Applied Physics, Vol. 49, No. 8, pp. 4320-4327, 1978. [2] Haines, N. F., J. C. Bell and P. J. McIntyre, The Application of Broadband Ultrasonic Spectroscopy to the Study of Layered Media, The Journal of Acoustical Society of America, Vol. 64, pp. 1645- 1651, 1978. [3] T. Pialucha, C. C. H. Guyott and P. Cawley, Amplitude Spectrum Method for the Measurement of Phase Velocity, Ultrasonics, Vol. 27, pp. 270-279, 1989. [4] M. J. Lang, M. Duarte-Dominguez and W. Arnold, Extension of Frequency Spectrum Method for Phase Velocity Measurements in Ultrasonic Testing, Review of Scientific Instruments, Vol. 71, No. 9, pp.3470-3473, 2000. [5] 留志宏,應用超音波量測薄層系統材料常數與量測的技術開發,碩士論文,國立台灣大學機械工程學系,1998。 [6] J. B. Hull, C. M. Langton, S. Barker and A. R. Jones, Identification and Characterisation of Materials by Broadband Ultrasonic Attenuation Analysis. Journal of Materials Processing Technology, Vol. 56, pp.148-157, 1996. [7] 曾俊豪、林資彬與李永春,光柵投射式雷射超音波量測系統及應用,第二十屆機械工程研討會論文集,2003。 [8] H. Ledbetter, C. M. Fortunko and S. Lin, Group and Phase Sound Velocities in an Eu1Ba2 Cu3 O7 Superconductor and Related Perovskite Oxides, Proceedings of the IEEE Ultrasonics Symposium, pp. 1215-1219, 1990. [9] H. Ogi, Y. Kawasaki and M. Hirao, Acoustic Spectroscopy of Lithium Niobate:Elastic and Piezoelectric Coefficients, American Institute of Physics, pp.2451-2456, 2002. [10] M. S. Greenwood and J. A. Bamberger, Measurement of Viscosity and Shear Wave Velocity of a Liquid or Slurry for on-line Process Control, Ultrasonics, Vol. 39, pp. 623-630, 2002. [11] American Society for Testing and Materials, Annual Book of ASTM Standards 2001, D445-83, D555-78, D1200-82, D1343-69, D2170- 83, D2196-81, 2001. [12] J. K. Vennard and R. L. Street, Elementary Fluid Mechanics, New York:Wiley, 1961. [13] F. Buiochi, R. T. Higuti, C. M. Furukawa and J. C. Adamowski, Ultrasonic Measurement of Viscosity of Liquids, Proceedings of the IEEE Ultrasonics Symposium, pp. 525-528, 2000. [14] T. G. Hertz, S. O. Dymling, H. W. Persson and K. LindstrÖm, A Non-Invasive Ultrasonic Method for Viscosity Measurements, Proceedings of the IEEE Ultrasonics Symposium, pp. 299-302, 1990. [15] V. Shah and K. Balasubramaniam, Effect of Viscosity on Ultrasound Wave Reflection from a Solid/Liquid Interface, Ultrasonics, Vol. 34, pp. 817-824,1996. [16] A. E. Brown, Ultrasonic Physics, New York:Elsevier Pub. Co., 1962. [17] 陳柏均,應用超音波量測陶瓷材料與液體黏度之特性,碩士論文,國立台灣大學機械工程學系,1999。 [18] V. Shah and K. Balasubramaniam, Measuring Newtonian Viscosity from the Phase of Reflected Ultrasonic Shear Wave, Ultrasonics, Vol. 38, pp. 921-927, 2000. [19] M. Inoue, K. Yoshino, H. Moritake and K. Toda, Viscosity Measurement of Nematic Liquid Crystal Using Shear Horizontal Wave Propagation in Liquid Crystal Cell, The Japan Society of Applied Physics, Vol. 40, pp.3528-3533, 2001. [20] K. S. Pedersen and H. P. Ronningsen, Effect of Precipitated Wax on Viscosity-A Model for Predicting Non-Newtonian Viscosity of Crude Oils, Energy and Fuels, Vol. 14, pp.43-51, 2000. [21] L. C. Lynnworth, Ultrasonic Measurements for Process Control, San Diego:Academic Press, c1989. [22] P. Vigoureux and D. Sc, Ultrasonic, New York Publishing Co. Inc., pp.26-31, 1951 [23] Achenbach and J. D., Wave Propagation in Elastic Solids, North -Holland, 1973. [24] Reismann, H. and P. S. Pawlik, Elasticity-Theory and Applications, Wiley-Interscience, pp. 128-135, 1980. [25] D. Royer and E. Dieulesaint, Elastic Waves in Solids, Springer Publishing Co., 1996. [26] J. L. Rose, Ultrasonic Waves in Solid Media, Cambridge University Press,1999. [27] 黃思堯,應用超音波量測三層材料系統內含薄層固體或液體在不同環境下的特性研究,碩士論文,國立台灣大學機械工程學系,2004。 [28] 王叔厚,流體力學,三民書局出版,1978。 [29] H. A. Barnes, J. F. Hutton, and K. Walters, An Introduction To Rheology, Elsevier Science Publishers B. V. , pp.16-23,1989. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38367 | - |
| dc.description.abstract | 超音波檢測不僅在工業界應用廣泛,於醫療體系、日常生活中亦普遍存在。工業中尤以非破壞檢測領域最常使用,因為其具有幾乎能穿透各種試件並對人體無害的優點,也可同時作缺陷檢測、材料常數量測與即時監控樣品品質,並因操作簡易所以被廣泛接受。
傳統超音波量測是直接由示波器上時域訊號的回波間距配合已知試片厚度,計算波行進的時間藉以求得波速值(脈衝回波法),然而主要待測材質為等向性材料因此超音波的入射方向並不會影響波速值,本文將嘗試先以脈衝回波法測量異向性(壓電)塊狀材料的波速,評估量測的準確度與可行性。 完成較厚的壓電塊狀材料測試之後,再進一步利用超音波搭配振幅頻譜法對於一般無法由拉伸試驗求得的薄層固體材料與陶瓷材料作非破壞性檢測,本文主要討論的內容是目前被廣為應用的壓電材料(PZT、半導體晶圓)之彈性性質,包含縱波波速、橫波波速與彈性常數測定,以作為相關元件設計之參考數據。 文中也探討改用液體延遲層代替固體延遲層對實驗結果所產生的影響。分析液體黏度與厚度等變因對量測訊號與計算結果影響的程度,可以歸納液體延遲層的優缺點作為實驗架設的考量。論文中也利用振幅頻譜法配合流體力學公式推算液體黏度,並實際針對高黏度液體(甘油、果糖)與低黏度液體(液晶)進行靜態黏度測定,同時探討一般環境中的壓力與溫度對液體黏度的影響。另一部份的實驗則是分析動態流體的黏度,其中包含牛頓流體的定量檢測與非牛頓流體的定性觀察。 | zh_TW |
| dc.description.abstract | Ultrasonic inspection, a technique of non-destructive test (NDT), is widely applied in material properties testing because of its low cost and high accuracy. Elastic constants of materials play an important role in many engineering applications and designs. In general, the piezoelectric material properties are not easily obtained from tensile test. Therefore, the non-destructive ultrasonic technique is used in this study to evaluate phase velocities by pulse-echo and amplitude-spectrum methods, and then determine the elastic constants of materials by using phase velocities. In this regard, the experimental results of phase velocities did an excellent work in correlating the standard values calculated from the wave propagation theory.
The influence of buffer layer on the experimental measurement for the thin layer system has also been investigated in this study. We replaced solid buffer layer with liquid ones which has different viscosity and layer thickness to analyze the differences of longitudinal wave velocity between different test conditions. The accuracy of experimental measurement on longitudinal wave velocity will be increased with the increasing liquid viscosity. In addition, the viscosity of thin liquid layer in static equilibrium and the environmental influence on the liquid viscosity are also discussed. The viscosity of liquids are obtained by inverting the wave velocities and attenuation coefficients with amplitude-spectrum method. The viscosities of liquid obtained in this study agree with the results presented in the literature. Furthermore, the viscosity of flowing fluid is measured by a self-designed liquid circular system. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T16:31:34Z (GMT). No. of bitstreams: 1 ntu-94-R92522503-1.pdf: 2066089 bytes, checksum: 059872762be6923e39040e800ae443d1 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 目 錄
誌謝I 摘要 II AbstractIII 表目錄VIII 圖目錄XI 第一章 緒論1 1.1 文獻回顧1 1.2 研究動機與內容簡介4 第二章 理論分析7 2.1 振幅頻譜法7 2.1.1 波速的推導 7 2.1.2 液體黏度的計算11 2.2 固體材料常數的推算12 2.2.1 應用波動理論推算等向性與異向性材料常數12 2.2.2 應用波動理論推算壓電材料彈性常數15 第三章 實驗儀器架設原理及操作17 3.1 儀器架設與實驗流程17 3.1.1 固體材料實驗17 3.1.2 流動液體黏度實驗17 3.2 實驗儀器原理18 3.2.1 超音波探頭之構造與原理18 3.2.2 超音波的音場與傳遞19 3.2.3 超音波的衰減20 3.3 實驗試片的設計21 第四章 壓電材料彈性常數量測29 4.1 塊狀壓電晶體29 4.1.1 x-y plane 30 4.1.2 y-z plane 32 4.1.3 x-z plane 33 4.1.4 石英的彈性材料常數測定34 4.2 塊狀壓電陶瓷34 4.2.1 x-y plane 36 4.2.2 y-z plane 36 4.2.3 x-z plane 37 4.2.4 壓電陶瓷的彈性材料常數測定38 4.3 薄層晶圓的波速39 4.3.1 AT-cut Quartz 39 4.3.2 Silicon 42 4.3.3 LiNbO3 43 4.3.4 LiTaO3 45 4.4 薄層壓電陶瓷的波速48 4.4.1 PIC-151 48 4.4.2 PZT-5J 49 第五章 液體延遲層對量測薄層固體的影響 88 5.1 不同黏度之液體延遲層探討88 5.2 不同厚度之待測層探討88 5.3 不同厚度之延遲層探討89 5.4 金屬薄層的波速量測90 第六章 薄層液體的黏度量測104 6.1 靜態液體的黏度量測104 6.1.1 果糖黏度104 6.1.2 甘油黏度105 6.1.3 高分子纖維素溶液黏度105 6.1.4 液晶黏度 106 6.1.5 溫度與壓力對果糖黏度的影響107 6.2 動態液體的黏度量測108 6.2.1 控制體積法108 6.2.2 動態循環111 第七章 結論與未來展望130 附錄 A 133 附錄 B 135 附錄 C 136 參考文獻137 | |
| dc.language.iso | zh-TW | |
| dc.subject | 壓電材料彈性常數 | zh_TW |
| dc.subject | 液體黏度 | zh_TW |
| dc.subject | 振幅頻譜法 | zh_TW |
| dc.subject | 超音波檢測 | zh_TW |
| dc.subject | Ultrasonic inspection | en |
| dc.subject | amplitude-spectrum method | en |
| dc.subject | viscosity | en |
| dc.subject | Elastic constants | en |
| dc.title | 應用超音波量測壓電材料彈性常數及薄層動態液體黏度 | zh_TW |
| dc.title | Measuring Elastic Constants of Piezoelectric Material and Flowing Fluid Viscosity by Ultrasonic Testing Method | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 尹慶中,李永春 | |
| dc.subject.keyword | 超音波檢測,壓電材料彈性常數,振幅頻譜法,液體黏度, | zh_TW |
| dc.subject.keyword | Ultrasonic inspection,Elastic constants,amplitude-spectrum method,viscosity, | en |
| dc.relation.page | 140 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-11 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 2.02 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
