Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38364Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 賴君亮 | |
| dc.contributor.author | Hsin-Fu Huang | en |
| dc.contributor.author | 黃信富 | zh_TW |
| dc.date.accessioned | 2021-06-13T16:31:29Z | - |
| dc.date.available | 2005-07-14 | |
| dc.date.copyright | 2005-07-14 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-11 | |
| dc.identifier.citation | Aris, R. 1956 On the dispersion of a solute in a fluid flowing through a tube. Proc. Roy. Soc. Lond. A 235, 67-77.
Aris, R. 1960 On the dispersion of a solute in pulsating flow trough a tube. Proc. Roy. Soc. Lond. A 259, 370-376. Çengel, Y. A. 2003 Heat Transfer: A Practical Approach, 2nd edn, pp. 726. New York, McGraw-Hill. Dutta, P. & Beskok, A. 2001a Analytical solution of combined electroosmotic/pressure driven flows in two-dimensional straight channels: finite Debye layer effects. Anal. Chem. 73, 1979-1986. Dutta, P. & Beskok, A. 2001b Analytical solution of time periodic electroosmotic flows: analogies to Stokes’ second problem. Anal. Chem. 73, 5097-5102. Erickson, D. & Li, D. 2003 Analysis of alternating current electroosmotic flows in a rectangular microchannel. Langmuir 19, 5421-5430. Hunter, R. J. 1981 Zeta Potential in Colloid Science, pp. 1-121, 357-359. London, Academic Press. Karniadakis, G. E. & Beskok, A. 2002 Micro Flows: Fundamentals and Simulation, pp. 193-210. New York, Springer-Verlag. Kurzweg, U. H. 1985 Enhanced heat-conduction in oscillating viscous flows within parallel-plate channels. J. Fluid Mech. 156, 291-300. Kurzweg, U. H. & Jaeger, M. J. 1987 Diffusional separation of gases by sinusoidal oscillations. Phys. Fluids 30, 1023-1025. Kurzweg, U. H. 1988 Enhanced diffusional separation in liquids by sinusoidal oscillations. Sep. Sci. Tech. 23, 105-117. Lin, H., Storey, B. D., Oddy, M. H., Chen, C. H., & Santiago, J. G. 2004 Instability of electrokinetic microchannel flows with conductivity gradients. Phys. Fluids 16, 1922-1935. Oddy, M. H., Santiago, J. G., & Mikkelsen, J. C. 2001 Electrokinetic instability micromixing. Anal. Chem. 73, 5822-5832. Probstein, R. F. 1994 Physicochemical Hydrodynamics: An Introduction, 2nd edn, pp. 21-29, 37-50, 82-96, & 190-202. New York, John Wiley. Suresh, V. and Homsy, G. M. 2004 Stability of time-modulated electroosmotic flow. Phys. Fluids 16, 2349-2356. Taylor, G. I. 1953 Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. Roy. Soc. Lond. A 219, 186-203. Thomas, A. M. & Narayanan, R. 2001 Physics of oscillatory flow and its effect on the mass transfer and separation of species. Phys. Fluids 13, 859-866. Thomas, A. M. & Narayanan, R. 2002a A comparison between the enhanced mass transfer in boundary and pressure driven oscillatory flow. Int. J. Heat and Mass Transfer 45, 4057-4062. Thomas, A. M. & Narayanan, R. 2002b The use of pulsatile flow to separate species. Ann. N. Y. Acad. Sci. 974, 42-56. Thomas, A. M. 2003 Unusual effects of oscillating flows in an annulus on mass transfer and separation. Adv. Space Res. 32, 279-285. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38364 | - |
| dc.description.abstract | 本文以數學解析之模式探討二維微流道中,由脈動式電滲透流所誘發的物質傳輸以及溶質分離之現象。在流道上下板電雙層互不影響、線性化之電場、不可壓縮且流線方向完全發展之流場,以及電中性物質之稀薄溶液的假設下,電雙層線性化電場、電滲流速度場,以及被傳輸物質濃度場為非偶合之統馭方程式所描述,並得以由格林函數所解出。結果顯示,微流道中的速度與濃度分布(場)會因為無因次震盪頻率(Womersley數)數值之提升,而愈趨非均勻分布。計算結果亦透露,流場在固定的震盪幅度(固定流率)之下,物質平均傳輸率會因為無因次頻率提升所增強的對流與物質分散效應(Dispersion Effects)而提高。在放大流場振幅的同時,平均質傳率也會因為對流效應之強化而增加。不同物種之間平均質傳率的越跨現象(Cross-Over Phenomenon)會因為德拜厚度(Debye Length)之增厚與震盪頻率的提升而愈趨明顯。當此越跨現象能有效提升質傳擴散係數較高物質之平均質傳率時,此一脈動式電滲流動即可成為生物晶片中,對溶質進行初步分離之基礎設計。 | zh_TW |
| dc.description.abstract | Mass transport induced by pulsatile electroosmotic flows in a two-dimensional microchannel is studied theoretically herein. With the assumptions of non-overlapping electrical double layers, linearized electrical potentials, streamwise fully-developed incompressible flows, and an infinitely dilute solution of neutral species, the governing equations for the electrical potential, the velocity field, and the species concentration distribution are solved analytically. The results indicate that the velocity and concentration distributions across the channel become more and more non-uniform as the Womersley number , or the oscillation frequency, increases. Results also reveal that, with a constant tidal displacement, the averaged mass transport rate increases with the Womersley number due to both the stronger convective and transverse dispersion effects. The averaged mass transport rate also increases with an increasing tidal displacement because of the associated stronger convective effects. The cross-over phenomenon of the mass transport rates for different species becomes possible with sufficiently large Debye lengths and at sufficiently high values of . As a result, with proper choices of the Debye length, oscillation frequency, and tidal displacement, pulsatile electroosmotic flow may become a good candidate for the first-step separation of the mass species. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T16:31:29Z (GMT). No. of bitstreams: 1 ntu-94-R93522101-1.pdf: 7271559 bytes, checksum: c6efcf49d7d81d605b8ee1f3522c99a9 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | Table of Contents
Chinese Abstract……………………………………………………i English Abstract………………………………………………….ii Acknowledgement and Dedication.........................iv Table of Contents………………………………………….…… ix Table Captions……………………………………………………..x Figure Captions……………………….………………….......xi Nomenclature...…………………….………………………….xiii Chapter 1: Introduction………………………………….……..1 Chapter 2: Assumptions, Nondimensionalization, and Formulation……………...................................5 (a) Electrical Field...………………………………….5 (b) Velocity Field………………………………………..7 (c) Concentration Field……………………………….…9 Chapter 3: Mathematical Solutions………………….……….13 (a) Electrical Field...……………………………………...13 (b) Velocity Field………………………………………………13 (c) The Lagrangian Displacement and Tidal Displacement…………...................................15 (d) Concentration Field…………….………………………..16 (e) The Time and Space Averaged Mass Transfer Rate……………….......................................18 Chapter 4: Results and Discussion……………………………21 (a) Limitation on Constant Tidal Displacement due to Power Input…..........................................21 (b) The Velocity Profile…….………………………...22 (c) The Convective Concentration Distribution…….23 (d) The Time/Space Averaged Mass Transport………..25 (e) Cross-Over Phenomenon and Separation of Species................................................27 Chapter 5: Concluding Remarks and Future Works.………..30 References………………………………………………………...32 Tables……………………………………………………………...34 Figures.…………………………………………………………….35 | |
| dc.language.iso | en | |
| dc.subject | 溶質分離 | zh_TW |
| dc.subject | 電雙層 | zh_TW |
| dc.subject | 脈動式電滲流 | zh_TW |
| dc.subject | 質傳提升 | zh_TW |
| dc.subject | 越跨現象 | zh_TW |
| dc.subject | oscillatory electroosmotic flow | en |
| dc.subject | separation of species | en |
| dc.subject | cross-over phenomenon | en |
| dc.subject | mass transport enhancement | en |
| dc.subject | electrical double layers | en |
| dc.title | 脈動式電滲透流對質傳與溶質分離之提升 | zh_TW |
| dc.title | Enhancement of Mass Transport and Separation of Species by Pulsatile Electroosmotic Flows | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃美嬌,伍次寅 | |
| dc.subject.keyword | 電雙層,脈動式電滲流,質傳提升,越跨現象,溶質分離, | zh_TW |
| dc.subject.keyword | electrical double layers,oscillatory electroosmotic flow,mass transport enhancement,cross-over phenomenon,separation of species, | en |
| dc.relation.page | 48 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-11 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| Appears in Collections: | 機械工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-94-1.pdf Restricted Access | 7.1 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
