Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38345
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張顏暉
dc.contributor.authorYu-Yin Huangen
dc.contributor.author黃郁茵zh_TW
dc.date.accessioned2021-06-13T16:31:00Z-
dc.date.available2005-07-28
dc.date.copyright2005-07-28
dc.date.issued2005
dc.date.submitted2005-07-12
dc.identifier.citationchapter1
1. Manasreh M O (ed) 1993 Semiconductor Quantum Well and Supperlattices for Long-Wavelength Infrared Detectors (Boston: Artech House ).
2. Manasreh M O (ed) 1997 Optoelectronic Properties of Semiconductor and Supperlattices volume III: Antimonide-Related Strained-Layer Heterostructures (Australia: Gordon and Breach Science Publishers).
3. H. Mohseni, A. Tahraoui, J. Wojkowski, M. Razeghi, Appl. Phys. Lett. 77 (11), 1572 (2000).
4. X. Xia, X. M. Chen, and J. J. Quinn, Phys. Rev. B 46, 7212 (1992).
5. Y. Naveh and B. Laikhtman, Phys. Rev. Lett. 77, 900 (1996).
6. J. P. Cheng, J. Kono, B. D. McCombe, I. Lo, W. C. Mitchel, and C. E. Stutz, Phys. Rev. Lett. 74, 450 (1995).
7. S. De-Leon and B. Laikhtman, Phys. Rev. B 61, 2874 (2000).
8. J. F. Jan and Y. C. Lee, Phys. Rev. B 58, R1714 (1998).
9. R. K. Willardson, A. C. Beer: Transport and Optical Phenomena, Semicond. Semimet., Vol. 8 (Academic, New York 1972).
10. W. Ruhle, W. Jakowetz, C. Wolk, R. Linnebach, and M. Pilkuhn, phys. stat. sol. (b) 73, 255 (1976).
11. G R Johnson, B C Cavenett, T M Kerr, P B Kirby, and C E C Wood, Semicond. Sci. Technol. 3, 1157-1165 (1988).
12. Ikai Lo, W. C. Mitchel, J. P. Cheng, Phys. Rev. B 50, 5316 (1994).
chapter2
1. L. J. van der Pauw, 'A Method of Measuring Specific Resistivity and Hall Effect of Discs of Arbitrary Shapes,' Philips Res. Repts. 13, 1-9 (1958).
2. L. J. van der Pauw, 'A Method of Measuring the Resistivity and Hall Coefficient on Lamellae of Arbitrary Shape,' Philips Tech. Rev. 20, 220-224 (1958).
3. M. H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, and E.A. Cornell, Science 269, 198 (1995).
4. D. S. Jin, J. R. Ensher, M. R. Mathews, C. E. Wieman and E. A. Cornell, Phys. Rev. Lett 77, 420 (1996).
5. M. R. Andews et al., Science 273, 84 (1996).
6. K. B. Davis e2 al., Phys. Rev. Lett. 75, 3969 (1995); M. -O. Mewes et al., ibid. 77, 416 (1996).
7. C. C. Bradlley, C. A. Sackett, J. J. Tollett, and R. G. Hulet, Phys. Rev. Lett. 75, 1687 (1995).
8. J. L. Lin and J. P. Wolfe, Phys. Rev. Lett. 71, 1222 (1993).
9. T. Goto, M. Y. Shen, S. Koyama, and T. Yokouchi, Phys. Rev. B 55, 7609 (1997).
10. D. W. Snoke, J. P. Wolfe, and A. Mysyrowicz, Phys. Rev. Lett. 64, 2543 (1990); E. Fortin, S. Fafard, and A. Mysyrowicz, ibid. 70, 3951 (1993); A. Mysyrowicz, E. Benson, and E. Fortin, ibid. 77, 896 (1996); 78, 3226 (1997).
11. M. N. Barber and M. E. Fisher, Phys. Rev. A 8, 1124 (1973).
12. W. N. Mei and Y. C. Lee, Physica A 96, 413 (1978).
13. J. F. Jan, Y. C. Lee, and B. McCombe, Bull. Am. Phys. Soc. 43, 403 (1998).
14. J. P. Wolfe and J. C. Kim, Bull. Am. Phys. Soc. 43, 44 (1998).
15. J. F. Jan, Y. C. Lee, Phys. Rev. B 58, R1714 (1998).
16. L. L. Chang, N. J. Kawai, E. E. Mendez, C. A. Chang and L. Esaki, Appl. Phys. Lett 38, 30 (1981).
17. Y. Guldner, J. P. Vieren, Poisin, M. Voos, L. L. Chang and L. Esaki, Phys. Rev. Lett. 45, 1719 (1980).
18. J. C. Mann, Y. Guldner, J. P. Vieren, P. Voisin, M. Voos, L. L. Chang and L. Esaki, Solid State Commun. 39, 683 (1981).
19. G. Bastard, E. E. Mendez, L. L. Chang and L. Esaki, J. Vac. Sci. Technol 21, 531 (1982).
20. J. Beerens, G. Gregoris, J. C. Portal, E. E. Mendez, L. L. Chang and L. Esaki, Phys.Rev. B 36, 4742 (1987).
21. F. F. Fang and W. E. Howard, Phys. Rev. Lett. 16, 797 (1966).
22. R. A. Stradling and R. A. Wood, J. Phys. C 1, 1711 (1968).
23. R. A. Stradling and P. C. Klipstein, Growth and Characterization of Semiconductors (Hilger, 1990).
24. Timothy H. Gfroever, Encyclopedia of Analytical Chemistry, R. A. Meyers (Ed.) pp. 9209-9231 (2002).
25. S. Perkowitz, Optical Characterization of Semiconductors: Infrared, Raman, and Photoluminescence Spectroscopy (Academic Press, 1993).
26. Paul Butcher, Norman N. March, Mario P. Tosi, Physics of Low-dimensional Semiconductor Structures.
27. H. Aoki and T. Ando, Solid State Commum. 28, 1079 (1981).
28. R. E Prange, Phys. Rev. B 23, 4802 (1981).
29. Hong Syuan Wang, Master thesis, National Taiwan University (2004).
chapter3
1. G. Bastard, E. E. Mendez, L. L. Chang, and L. Esaki, Phys. Rev. B 26, 1974 (1982).
2. E. E. Mendez, L. Esaki, and L. L. Chang, Phys. Rev. Lett. 55, 2216 (1985).
3. H. Munekata, E. E. Mendez, Y. Iye and L. Esaki, Surf. Sci. 174, 449 (1986).
4. M. Altarelly, J. C. Maan, L. L. Chang, and L. Esaki, Phys. Rev. B 35, 9867 (1982).
5. A. P. Dmitriev, S. A. Emel’yanov, S. V. Ivanov, B. Ya. Mel’tser, Ya. V. Terent’ev, and I. D. Yaroshetskiî, Semiconductors 29 (6), 557 (1995).
6. See, for instance, L. Esaki in Molecular Beam Eapitaxy and Heterostructures, edited by L. L. Chang and K. Ploog (Martinus Nijhoff, Dordrecht, 1985), p. 1.
7. J. F. Jan, Y. C. Lee, Phys. Rev. B 58, R1714 (1998).
8. G. Bastard, E. E. Mendez, L. L. Chang and L. Esaki, J. Vac. Sci. Technol 21, 531 (1982).
9. E. E. Mendez, L. Esaki and L. L. Chang, Phys.Rev. Lett. 55, 2216 (1985).
10. T. P. Smith Ⅲ, H. Munekata, L. L. Chang, F. F. Fang and L. Esaki, Surf. Sci. 196, 687 (1988).
11. Ikai Lo, W. C. Mitchel, M. O. Manasreh, C. E. Stutz, and K. R. Evans, Appl. Phys. Lett. 60, 751 (1992).
12. Ikai Lo, W. C. Mitchel, R. Kaspi, Said Elhamri, and R. S. Newrock, Appl. Phys. Lett. 65, 1024 (1994).
13. W. C. Wang, L. C. Tsai, J. C. Fan, and Y. F. Chen, and Ikai Lo, J. Appl. Phys. 86, 3152 (1999).
14. D. V. Lang and R. A. Logan, Phys, Lett. 39, 635 (1977); D. L. Lang, R. A. Logan, and M. Jaros, Phys. Rev. B 19, 1015 (1979).
chpater4
1. M Cardona, J. Appl. Phys. Suppl. 32, 2151 (1961).
2. E. J. Johnson and H. Y. Fan, Phys. Rev. A 139, 1991 (1961).
3. C. Woelk, K. W. Benz, Journal of Crystal Growth 27, 177 (1974).
4. W. Jakowetz, W. Rühle, K. Breuningger and M. Pilkuhn, phys. stat .sol. (a) 12, 169 (1972).
5. S. C. Chen and Y. K. Su, J. Appl. Phys. 66, 350 (1989).
6. S. Basu, U. N. Roy, B. M. Arora, A. K. Srivastava, Appl. Surf. Sci. 59, 159 (1992).
7. W. Rühle, W. Jakowetz, C. Wölk, R. Linnebach and M. Pilkuhn, phys. stat. sol. (b) 73, 255 (1976).
8. R. A. Noack, W. Ruhle, T. N. Morgan, Phys. Rev. B 18, 6944 (1978).
9. E T R Chidley, S K Haywood, A B Henriques, N J Mason, R J Nicholas and P J Walker, Semicond. Sci. Technol. 6, 45-53 (1991).
10. Salesse A, Alabedra R, Chen Y, Lakrimi M, Nicholas R J, Mason N J and Walker P, Semicond. Sci. Technol. 12, 413 (1997).
11. Hardtegen H, Ungermanns Ch, Matt M, Förster A, v. d. Ahe M, Carius R, Schmidt R and Luth F, Proc. EW MOVPE (Berlin) vol VII p D 10 (1997).
12. G R Johnson, B C Cavenett, T M Kerr, P B Kirby and C E C Wood, Semicond. Sci. Technol. 3, 1157-1165 (1988).
13. P. Gladkov, E. Monova and J. Weber, Journal of Crystal Growth 146, 319 (1995).
14. D. Bimberg, M. Sondergeld and E. Grobe ,Phys.Rev. B 4, 3451 (1971).
15. Varshni, Y. P., Physica 34, 150 (1967).
16. C. Ghezzi, R. Magnanini, A. Parisini, B. Rotelli, L. Tarricone, A. Bosacchi and S. Franchi, Phys.Rev. B 52, 1463 (1995).
17. P.S. Dutta, K.S.R. Koteswara Rao, H.L. Bhat and V. Kumar, Appl. Phys. A 61. 149-152 (1995).
18. Effer D and Etter P J , J. Phys. Chem. Solids 25, 451 (1964).
19. Dutta P S, Bhat H L and Kumar V, J. Appl. Phys. 81, 5821 (1997).
20. M. J. Yang, R. J. Wagner, B. V. Shanabrook, W. J. Moore, J. R. Waterman, M. E. Twigg, and M. Fatermi, Appl. Phys. Lett. 61 (5), 3 (1992).
21. Nicholas D J, Lee M, Hamilton B and Singer K E, Journal of Crystal Growth 81 (1-4), 298 (1987).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38345-
dc.description.abstractSemi-metallic GaSb/InAs system has attracted much attention due to its unique band alignment. In this thesis, we report the Hall effect and photoluminescence studies of such a system.
In the Hall effect measurement, it was found that the electron concentration in the InAs decreases with decreasing temperature. Three activation energies (Ea1, Ea2 and Ea3) were obtained. Ea2 obtained from the cross over region (about 30 K to 50 K) is smaller than 1 meV, and it is tentatively attributed to the binding energy of the spatially exciton in this system. We found that our transport results at low temperature are consistent with the Bose-Einstein Condensation (BEC) behavior which theoretical prediction proposed by J. F. Jan and Y. C. Lee. Using self-consistent variational approach to model the structure, we are able to estimate the electron n (in the InAs layer) and hole p (in the GaSb layer) densities.
In the photoluminescence (PL) measurement, temperature and power dependence of photoluminescence emission were performed and two main peaks (798meV and 773meV) corresponding to the transitions in GaSb layer were observed. From the Arrhenius plots of the integrated intensities, activation energies were obtained. We suggest that the 798 meV transition is a band-acceptor transition instead of a bound excition- neutral acceptor (BE) transition which other authors have proposed in bulk GaSb. We’ve also observed the integrated PL intensity of 773meV peak (e-Å) tends to saturate with raising laser power.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T16:31:00Z (GMT). No. of bitstreams: 1
ntu-94-R91222028-1.pdf: 4567903 bytes, checksum: f2f08c32f8e748598ce8ea64ceff73dc (MD5)
Previous issue date: 2005
en
dc.description.tableofcontentsContents
Chapter 1.
Introduction 1
Chapter 2.
Theoretical Background 5
2-1 Hall effect ………...…………………………………………5
2-2 The van der Pauw Technique……………………………… …8
2-3 Bose-Einstein Condensation ………………………… ……11
2-4 Self-consistent calculations in InAs-GaSb heterojunctions ……………………………………………………14
2-5 Shubnikov-de Haas effect ………………………………… 17
2-6 Photoluminescence ……………………………………………20
Chapter 3.
Transport study of semi-metallic GaSb/ InAs quantum well 30
3-1 Sample preparation ………………………………………… 30
3-2 Experimental procedure …………………………………… 32
3-3 Results and discussion …………………………………… 35
Chapter 4.
Optical study 52
4-1 Introduction ………………………………………………… 52
4-2 Experiment …………………………………………………… 54
4-3 Results and discussion …………………………………… 56
Chapter 5.
Conclusions 69
dc.language.isoen
dc.subject霍爾效應zh_TW
dc.subject砷化銦zh_TW
dc.subject半金屬zh_TW
dc.subject銻化鎵zh_TW
dc.subject量子井zh_TW
dc.subject電子濃度zh_TW
dc.subject螢光光譜zh_TW
dc.subjectvan der Pauwen
dc.subjectsemi-metallicen
dc.subjectbinding energyen
dc.subjectexcitonen
dc.subjecttype-IIen
dc.subjectmobilityen
dc.subjectelectron concentrationen
dc.subjecttransporten
dc.subjectphotoluminescenceen
dc.subjectHall measurementen
dc.subjectInAsen
dc.subjectGaSben
dc.subjectquantum wellen
dc.title半金屬銻化鎵/砷化銦系統中傳輸及光學性質研究zh_TW
dc.titleTransport and optical properties of semi-metallic GaSb/InAs systemen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳永芳,梁啟德
dc.subject.keyword砷化銦,半金屬,銻化鎵,量子井,電子濃度,螢光光譜,霍爾效應,zh_TW
dc.subject.keywordInAs,GaSb,quantum well,van der Pauw,Hall measurement,photoluminescence,transport,electron concentration,mobility,type-II,exciton,binding energy,semi-metallic,en
dc.relation.page70
dc.rights.note有償授權
dc.date.accepted2005-07-12
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
4.46 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved