請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38332
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 白書禎 | |
dc.contributor.author | Chun-Chieh Lai | en |
dc.contributor.author | 賴俊傑 | zh_TW |
dc.date.accessioned | 2021-06-13T16:30:40Z | - |
dc.date.available | 2005-07-14 | |
dc.date.copyright | 2005-07-14 | |
dc.date.issued | 2005 | |
dc.date.submitted | 2005-07-12 | |
dc.identifier.citation | [1] J. S. Fritz, D. M. Scott, Statistical approach to chromatographic theory. J. Chromatogr. (1983) 193-212
[2] Valerio B. Di Marco*, G. Giorgio Bombi, Mathematical functions for the representation of chromatographic peaks. J. Chromatogr. A, 931(2001) 1-30 [3] J.P. Foley, J.G. Dorsey, A Review of the Exponential Modified Gaussian (EMG) Function : Evaluation and Subsequent Calculation of Universal Data. J. Chromatogr. Sci. 22 (1984) 40-46. [4] D. Hanggi, P. Carr, Errors in exponentially modified Gaussian equations in the literatre. Anal. Chem. 57 (1985) 2394-2395. [5] J.P. Foley, J.G. Dorsey, Equations for calculation of chromatographic figures of merit for ideal and skewed peaks. Anal. Chem. 55 (1983) 730-737 [6] J.P. Foley, Equation for chromatographic peak modeling and calculation of peak area. Anal. Chem. 59 (1987) 1984-1987 [7] S. C. Pai, Evaluation of the Temporal Effect to the Peak Tailing in Flow Injection Analysis. J. Chromatogr. A. 950 (2002) 271-279. [8] S.C. Pai, Parcel Model for Peak Shapes in Chromatography Numerical Verification of the Temporal Distortion Effect to Peak Asymmetry. J. Chromatogr. A, 988 (2003) 233-260. [9] P.W. Atkins, Atkins, sixth edition, Oxford, New York, 1988. [10] G. I. Taylor, Proc. Roy. Dispersion of soluble matter in solvent flowing slowly through a bube. Proc. Roy. Soc. A. 219 (1953) 186-203 [11] D.A. Skoog, F.J. Holler, T.A. Nieman, in: 5th ed, Principles of Instrumental Analysis, Saunders College,Philadelphi,1998 [12] K. Robards, P.R. Haddad, P.E. Jackson, Principles and Practice of Modern Chromatographic Methods, Academic Press, London, 1994 [13] S.C. Pai, Temporally Convoluted Gaussian Equations for Chromatographic peaks, J. Chromatogr. A, 1028 (2004) 89-103. [14] Tiing Yu, Sue-Hui Lin, Alf Sheu, Der-Jyh Yang, Su-Cheng Pai A Novel Interpretation on Band Broadening in Linear Chromatography with Evidences Supported by An On-column Monitoring Experiment (Personal communication) [15] Martin AJP, Synge RLM A new form of chromatogram empoloying two liquid phases I. A theory of chromatography 2. Application to the micro-determination of the higher monoamino-acids in proteins, Biochemical Journal 35, 1358-1368 Part 2 1941 [16] E. Glueckauf, Ion Exchange as a Separations Method. IV. A Theoretical analysis of the Column Separations Process, Trans. Faraday Soc., 51 (1955) 34 [17] S. W. Mayer and E. R. Tompkins, Theory of chromatography. Part 9. The “theoretical plate” concept in column separations, J. Amer. Chem. Soc., 69 (1947) 2866 [18] J. C. Giddings, Dynamics of Chromatography, Part I, Marcel Deekker, New York, 1965, Ch. 2. [19] Pai, 2005 (personal communication) [20] S.C. Pai, L.Y. Chiao, Temporal Shifting:A Key to the Skewed Peak Puzzle. (submitted to J. Chromatogr. A) (2004) (Personal communication) | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38332 | - |
dc.description.abstract | 本研究以郵包模型(Parcel model)和空時扭變高斯方程式(Temporally Convoluted Gaussian Equation,簡稱TCG)為基礎,推導一個可適用於 流動注入分析及層析法的波峰方程式,並利用交大的實驗數據佐證之。在原理上,將無因次滯留效應(retention effect)因次化,再與沿散效應(dispersion effect)一起併入TCG方程式的標準偏差項中。結果發現,本研究推導之波峰方程式不但可以模擬層析譜,還可以預測不同實驗條件下之波形,更進一步證明層析管柱中沿散效應極小。其中對於樣本在管柱中擴散的描述,與著名范丁特方程式(van Deemter equation),有異曲同工之妙。 | zh_TW |
dc.description.abstract | A continuous Parcel model has been established by incorporating a recently developed discrete Parcel concept with Fick’s Law. The band broadening of an injected sample is assumed attributing to three major factors namely, the initial state, the retention effect and the dispersion effect. An Excel worksheet has been designed to simulate the sample migration route and peak shapes on both longitudinal and temporal axes. The model was applied to analyze experimental data provided by a research group of National Chiao Tung University. The results of peak restoration were found satisfactory. It was also found that the dispersion coefficient (D) is minimal in a chromatographic column, and that the peak shape is mainly controlled by the distribution ratio k” and a parameter (Δt) representing the efficiency of the column system of interest. The mathematical expression for the height of the theoretical plate derived by the present model is very similar to the well-known van Deemter Equation. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T16:30:40Z (GMT). No. of bitstreams: 1 ntu-94-R91241404-1.pdf: 3928175 bytes, checksum: 165da6b9ef2bd28b8e6b9ad0598f6198 (MD5) Previous issue date: 2005 | en |
dc.description.tableofcontents | 目錄
目錄-----------------------------------------------------I 表目錄--------------------------------------------------IV 圖目錄----- ---------------------------------------------V 中文摘要------------------------------------------------VI 英文摘要------------------------------------------------VII 第一章 緒論--------------------------------------------1 1.1層析法及波峰方程式簡介--------------------------------1 1.2滯留效應對樣品擴散的影響------------------------------2 1.3滯留效應與沿散效應------- ----------------------------3 1.4研究動機與目標----------------------------------------4 第二章 有因次TCG方程式之推導----------------------------6 2.1郵包論和TCG方程式簡介------------------------6 2.2起始條件參數之設定---------------------------7 2.3滯留效應的推演-------------------------------8 2.4沿散效應的推演------------------------------10 2.5合併的變異係數------------------------------10 2.6空間座標上的波峰方程式----------------------11 2.7時間軸上的波峰方程式-----------------------------12 第三章 交大實驗與模擬參數之尋找------------------------14 3.1交大的實驗----------------------------------14 3.2尋找參數------------------------------------16 3.2.1延時波形參數(At,ht,tr)---------16 3.2.2空間波形參數(AL,hL,Lp)---------16 3.2.3質量中心的軌跡-------------------17 3.2.4有效樣品截面積百分比rv%----------17 3.2.5平均流速u------------------------19 3.2.6面積同化因子與記錄器波形---------19 3.2.7沿散係數D之計算------------------21 3.2.8解析度Δt--------------------22 3.2.9另外尋找沿散係數D的方法----------24 3.2.10解析度Δt之估計值-----------25 3.2.11動相時間記錄波形參數------------26 3.3尋找模擬參數之結果--------------------------26 第四章 新層析模式(郵包論)之應用------------------------36 4.1建立郵包模型試算表--------------------------36 4.2 模擬交大實驗波譜---------------------------37 4.3模擬波形誤差之討論--------------------------40 4.3.1模擬之原理與誤差之形成-----------40 4.3.2實驗空間波形數據誤差-------------40 4.3.3實驗空間波形之影響--------------------------- -----41 4.3.4實驗空間波形面積與延時波形面積---41 4.4預測實驗波譜--------------------------------42 4.5沿散係數對波形之影響------------------------44 4.6解析度對波形之影響--------------------------45 第五章 結論--------------------------------------------56 參考文獻------------------------------------------------58 附錄A交大實驗RUN1(k”=1.7) 620×170吸光值矩陣------------61 附錄B交大實驗RUN2(k”=2.8) 620×225吸光值矩陣------------62 附錄C交大實驗RUN3 (k”=8.8) 620×230吸光值矩陣-----------63 附錄D 交大實驗儀器簡圖----------------------------------64 表目錄 表3-1交大層析波譜數據表---------------------------------29 表3-2交大實驗數據表(Ld=24,30cm)------------------------30 表3-3利用交大數擬中溶劑前緣(solvent front)算出之D值表---31 表3-4嘗試利用Eq.3-6計算解析度Δt之計算數據表--------32 表3-5樣品沿散係數D與解析度Δt之上限表---------------33 表3-6由Eq.3-7修正後之交大層析波譜數據-------------------34 表3-7由交大實驗數據反推之基本參數------------------- ---35 表4-1交大實驗質量中心到達時間與模擬質量中心到達時間數據差異表(trm)-------------------------------------------------53 表4-2交大實驗空間波形數據與模擬空間波形數據差異表(AL,hL) ------------------------------------------------------ -54 表4-3交大實驗延時波形數據與模擬延時波形數據差異表(At,ht) ------------------------------------------------------- 55 圖目錄 圖3-1溶劑前緣波寬與實驗波形點所對應時間tr示意圖---------27 圖3-2曲線校正(curve fitting)求沿散係數與解析度圖--------28 圖4-1建立在Excel上的郵包模型試算表------------------- --46 圖4-2郵包模型模擬層析管中三種化合物在時空平面上移動所顯 示的軌跡圖----------------------------------------------47 圖4-3由交大實驗之吸光值矩陣中的數據與郵包模型模擬之波譜-48 圖4-4附錄A,B,C吸光值矩陣中的空間波形面積對時間圖------49 圖4-5模式預測層析過程圖(Ld=1,5,10,15,20cm)----------50 圖4-6沿散係數對波形影響圖-------------------------------51 圖4-7解析度對波形影響圖---------------------------------52 | |
dc.language.iso | zh-TW | |
dc.title | 以因次化郵包模型模擬層析管分離作用之研究 | zh_TW |
dc.title | Simulation of Column Chromatograph by A Dimensional Parcel Model | en |
dc.type | Thesis | |
dc.date.schoolyear | 93-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 喬凌雲,余艇,王少君 | |
dc.subject.keyword | 郵包模型,層析管, | zh_TW |
dc.subject.keyword | Parcel Model,Simulation, | en |
dc.relation.page | 64 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2005-07-12 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 海洋研究所 | zh_TW |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-94-1.pdf 目前未授權公開取用 | 3.84 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。