請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38296完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 賈景山 | |
| dc.contributor.author | Yang Li | en |
| dc.contributor.author | 李泱 | zh_TW |
| dc.date.accessioned | 2021-06-13T16:29:46Z | - |
| dc.date.available | 2016-10-07 | |
| dc.date.copyright | 2011-10-07 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-19 | |
| dc.identifier.citation | 伍、參考文獻
Ahn,S.J., and Burne,R.A. (2006) The atlA operon of Streptococcus mutans: role in autolysin maturation and cell surface biogenesis. J. Bacteriol. 188: 6877-6888. Ajdic,D., McShan,W.M., McLaughlin,R.E., Savic,G., Chang,J., Carson,M.B. et al. (2002) Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc. Natl. Acad. Sci. U. S. A. 99: 14434-14439. Bayles,K.W. (2007) The biological role of death and lysis in biofilm development. Nat. Rev. Microbiol. 5: 721-726. Beiter,K., Wartha,F., Albiger,B., Normark,S., Zychlinsky,A., and Henriques-Normark,B. (2006) An endonuclease allows Streptococcus pneumoniae to escape from neutrophil extracellular traps. Curr. Biol. 16: 401-407. Berne,C., Kysela,D.T., and Brun,Y.V. (2010) A bacterial extracellular DNA inhibits settling of motile progeny cells within a biofilm. Mol. Microbiol.. Borregaard,N. (2010) Neutrophils, from marrow to microbes. Immunity 33: 657-670. Brinkmann,V., Laube,B., Abu,A.U., Goosmann,C., and Zychlinsky,A. (2010) Neutrophil extracellular traps: how to generate and visualize them. J. Vis. Exp.. Brinkmann,V., Reichard,U., Goosmann,C., Fauler,B., Uhlemann,Y., Weiss,D.S. et al. (2004) Neutrophil extracellular traps kill bacteria. Science 303: 1532-1535. Burnette-Curley,D., Wells,V., Viscount,H., Munro,C.L., Fenno,J.C., Fives-Taylor,P., and Macrina,F.L. (1995) FimA, a major virulence factor associated with Streptococcus parasanguis endocarditis. Infect. Immun. 63: 4669-4674. Cheung,A.L., Eberhardt,K.J., Chung,E., Yeaman,M.R., Sullam,P.M., Ramos,M., and Bayer,A.S. (1994) Diminished virulence of a sar-/agr- mutant of Staphylococcus aureus in the rabbit model of endocarditis. J. Clin. Invest. 94: 1815-1822. Chow,O.A., von Kockritz-Blickwede,M., Bright,A.T., Hensler,M.E., Zinkernagel,A.S., Cogen,A.L. et al. (2010) Statins enhance formation of phagocyte extracellular traps. Cell Host Microbe 8: 445-454. Clark,F.A., and Klebanoff,S.J. (1978) Chronic granulomatous disease: studies of a family with impaired neutrophil chemotactic, metabolic and bactericidal function. Am. J. Med. 65: 941-948. Clark,S.R., Ma,A.C., Tavener,S.A., McDonald,B., Goodarzi,Z., Kelly,M.M. et al. (2007) Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat. Med. 13: 463-469. Das,T., Sharma,P.K., Busscher,H.J., van der Mei,H.C., and Krom,B.P. (2010) Role of extracellular DNA in initial bacterial adhesion and surface aggregation. Appl. Environ. Microbiol. 76: 3405-3408. Flemming,H.C., and Wingender,J. (2010) The biofilm matrix. Nat. Rev. Microbiol. 8: 623-633. Fuchs,T.A., Abed,U., Goosmann,C., Hurwitz,R., Schulze,I., Wahn,V. et al. (2007) Novel cell death program leads to neutrophil extracellular traps. J. Cell. Biol. 176: 231-241. Fuchs,T.A., Brill,A., Duerschmied,D., Schatzberg,D., Monestier,M., Myers,D.D., Jr. et al. (2010) Extracellular DNA traps promote thrombosis. Proc. Natl. Acad. Sci. U. S. A. 107: 15880-15885. Gupta,A.K., Hasler,P., Holzgreve,W., Gebhardt,S., and Hahn,S. (2005) Induction of neutrophil extracellular DNA lattices by placental microparticles and IL-8 and their presence in preeclampsia. Hum. Immunol. 66: 1146-1154. Gupta,A.K., Joshi,M.B., Philippova,M., Erne,P., Hasler,P., Hahn,S., and Resink,T.J. (2010) Activated endothelial cells induce neutrophil extracellular traps and are susceptible to NETosis-mediated cell death. FEBS Lett. 584: 3193-3197. Hakkim,A., Furnrohr,B.G., Amann,K., Laube,B., Abed,U.A., Brinkmann,V. et al. (2010) Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc. Natl. Acad. Sci. U. S. A. 107: 9813-9818. Hall-Stoodley,L., Costerton,J.W., and Stoodley,P. (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat. Rev. Microbiol. 2: 95-108. Hamada,S., and Slade,H.D. (1980) Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiol. Rev. 44: 331-384. Hurtado,P., and Peh,C.A. (2010) LL-37 promotes rapid sensing of CpG oligodeoxynucleotides by B lymphocytes and plasmacytoid dendritic cells. J. Immunol 184: 1425-1435. Ito,H.O. (2006) Infective endocarditis and dental procedures: evidence, pathogenesis, and prevention. J. Med. Invest. 53: 189-198. Jesaitis,A.J., Franklin,M.J., Berglund,D., Sasaki,M., Lord,C.I., Bleazard,J.B. et al. (2003) Compromised host defense on Pseudomonas aeruginosa biofilms: characterization of neutrophil and biofilm interactions. J. Immunol. 171: 4329-4339. JOHNSON,A.J., GOGER,P.R., and TILLETT,W.S. (1954) The intravenous injection of bovine crystalline pancreatic desoxyribonuclease into patients. J. Clin. Invest. 33: 1670-1686. Jung,C.J., Zheng,Q.H., Shieh,Y.H., Lin,C.S., and Chia,J.S. (2009) Streptococcus mutans autolysin AtlA is a fibronectin-binding protein and contributes to bacterial survival in the bloodstream and virulence for infective endocarditis. Mol. Microbiol. 74: 888-902. Kessenbrock,K., Krumbholz,M., Schonermarck,U., Back,W., Gross,W.L., Werb,Z. et al. (2009) Netting neutrophils in autoimmune small-vessel vasculitis. Nat. Med. 15: 623-625. Kobayashi,S.D., and DeLeo,F.R. (2009) Role of neutrophils in innate immunity: a systems biology-level approach. Wiley Interdiscip Rev. Syst. Biol. Med. 1: 309-333. Lande,R., Gregorio,J., Facchinetti,V., Chatterjee,B., Wang,Y.H., Homey,B. et al. (2007) Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 449: 564-569. lesen-Holm,M., Barken,K.B., Yang,L., Klausen,M., Webb,J.S., Kjelleberg,S. et al. (2006) A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol. Microbiol. 59: 1114-1128. Liu,Y., and Burne,R.A. (2011) The Major Autolysin of Streptococcus gordonii Is Subject to Complex Regulation and Modulates Stress Tolerance, Biofilm Formation, and Extracellular-DNA Release. J. Bacteriol. 193: 2826-2837. Mann,E.E., Rice,K.C., Boles,B.R., Endres,J.L., Ranjit,D., Chandramohan,L. et al. (2009) Modulation of eDNA release and degradation affects Staphylococcus aureus biofilm maturation. PLoS One 4: e5822. Moreillon,P., Entenza,J.M., Francioli,P., McDevitt,D., Foster,T.J., Francois,P., and Vaudaux,P. (1995) Role of Staphylococcus aureus coagulase and clumping factor in pathogenesis of experimental endocarditis. Infect. Immun. 63: 4738-4743. Munro,C.L., and Macrina,F.L. (1993) Sucrose-derived exopolysaccharides of Streptococcus mutans V403 contribute to infectivity in endocarditis. Mol. Microbiol. 8: 133-142. Murray,T.S., Egan,M., and Kazmierczak,B.I. (2007) Pseudomonas aeruginosa chronic colonization in cystic fibrosis patients. Curr. Opin. Pediatr. 19: 83-88. Neeli,I., Khan,S.N., and Radic,M. (2008) Histone deimination as a response to inflammatory stimuli in neutrophils. J. Immunol. 180: 1895-1902. Papayannopoulos,V., Metzler,K.D., Hakkim,A., and Zychlinsky,A. (2010) Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J. Cell. Biol. 191: 677-691. Papayannopoulos,V., and Zychlinsky,A. (2009) NETs: a new strategy for using old weapons. Trends Immunol. 30: 513-521. Parks,Q.M., Young,R.L., Poch,K.R., Malcolm,K.C., Vasil,M.L., and Nick,J.A. (2009) Neutrophil enhancement of Pseudomonas aeruginosa biofilm development: human F-actin and DNA as targets for therapy. J. Med. Microbiol. 58: 492-502. Que,Y.A., Francois,P., Haefliger,J.A., Entenza,J.M., Vaudaux,P., and Moreillon,P. (2001) Reassessing the role of Staphylococcus aureus clumping factor and fibronectin-binding protein by expression in Lactococcus lactis. Infect. Immun. 69: 6296-6302. Ramos-Kichik,V., Mondragon-Flores,R., Mondragon-Castelan,M., Gonzalez-Pozos,S., Muniz-Hernandez,S., Rojas-Espinosa,O. et al. (2009) Neutrophil extracellular traps are induced by Mycobacterium tuberculosis. Tuberculosis (Edinb ) 89: 29-37. Remijsen,Q., Kuijpers,T.W., Wirawan,E., Lippens,S., Vandenabeele,P., and Vanden,B.T. (2011a) Dying for a cause: NETosis, mechanisms behind an antimicrobial cell death modality. Cell Death Differ. 18: 581-588. Remijsen,Q., Vanden,B.T., Wirawan,E., Asselbergh,B., Parthoens,E., De,R.R. et al. (2011b) Neutrophil extracellular trap cell death requires both autophagy and superoxide generation. Cell Res. 21: 290-304. Rice,K.C., Mann,E.E., Endres,J.L., Weiss,E.C., Cassat,J.E., Smeltzer,M.S., and Bayles,K.W. (2007) The cidA murein hydrolase regulator contributes to DNA release and biofilm development in Staphylococcus aureus. Proc. Natl. Acad. Sci. U. S. A. 104: 8113-8118. Sauer,K., Camper,A.K., Ehrlich,G.D., Costerton,J.W., and Davies,D.G. (2002) Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J. Bacteriol. 184: 1140-1154. Scheld,W.M., Valone,J.A., and Sande,M.A. (1978) Bacterial adherence in the pathogenesis of endocarditis. Interaction of bacterial dextran, platelets, and fibrin. J. Clin. Invest. 61: 1394-1404. Shak,S., Capon,D.J., Hellmiss,R., Marsters,S.A., and Baker,C.L. (1990) Recombinant human DNase I reduces the viscosity of cystic fibrosis sputum. Proc. Natl. Acad. Sci. U. S. A. 87: 9188-9192. Shibata,Y., Kawada,M., Nakano,Y., Toyoshima,K., and Yamashita,Y. (2005) Identification and characterization of an autolysin-encoding gene of Streptococcus mutans. Infect. Immun. 73: 3512-3520. Stoodley,P., Sauer,K., Davies,D.G., and Costerton,J.W. (2002) Biofilms as complex differentiated communities. Annu. Rev. Microbiol. 56: 187-209. Stutzmann,M.P., Entenza,J.M., Vaudaux,P., Francioli,P., Glauser,M.P., and Moreillon,P. (2001) Study of Staphylococcus aureus pathogenic genes by transfer and expression in the less virulent organism Streptococcus gordonii. Infect. Immun. 69: 657-664. Thomas,V.C., Thurlow,L.R., Boyle,D., and Hancock,L.E. (2008) Regulation of autolysis-dependent extracellular DNA release by Enterococcus faecalis extracellular proteases influences biofilm development. J. Bacteriol. 190: 5690-5698. von Kockritz-Blickwede,M., Goldmann,O., Thulin,P., Heinemann,K., Norrby-Teglund,A., Rohde,M., and Medina,E. (2008) Phagocytosis-independent antimicrobial activity of mast cells by means of extracellular trap formation. Blood 111: 3070-3080. Walker,M.J., Hollands,A., Sanderson-Smith,M.L., Cole,J.N., Kirk,J.K., Henningham,A. et al. (2007) DNase Sda1 provides selection pressure for a switch to invasive group A streptococcal infection. Nat Med 13: 981-985. Walker,T.S., Tomlin,K.L., Worthen,G.S., Poch,K.R., Lieber,J.G., Saavedra,M.T. et al. (2005) Enhanced Pseudomonas aeruginosa biofilm development mediated by human neutrophils. Infect. Immun. 73: 3693-3701. Wang,Y., Li,M., Stadler,S., Correll,S., Li,P., Wang,D. et al. (2009) Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J. Cell Biol. 184: 205-213. Whitchurch,C.B., Tolker-Nielsen,T., Ragas,P.C., and Mattick,J.S. (2002) Extracellular DNA required for bacterial biofilm formation. Science 295: 1487. Yousefi,S., Gold,J.A., Andina,N., Lee,J.J., Kelly,A.M., Kozlowski,E. et al. (2008) Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nat. Med. 14: 949-953. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38296 | - |
| dc.description.abstract | 生物膜形成能力在轉糖鏈球菌(Streptococcus mutans)引起高致死率感染性心內膜炎(infective endocarditis)之致病機制中扮演重要角色。血液中的轉糖鏈球菌,可黏附到受傷的瓣膜上形成贅疣(vegetation),進一步引起感染性心內膜炎,但到目前為止,對於贅疣形成之詳細機制仍不清楚。近年研究顯示,許多細菌會藉由調控自體溶解(autolysis)之活性,以放出胞外去氧核醣核酸(extracellular DNA,eDNA)幫助細菌形成生物膜;而嗜中性白血球胞外網狀結構(neutrophil extracellular traps,NETs)已被證實會抓住並活化血小板,進而促進血栓形成,顯示NETs可能也參與在贅疣形成機制中。因此,本篇研究便是要進一步探討細菌eDNA及NETs對於轉糖鏈球菌在感染性心內膜炎中形成生物膜所扮演的角色。在大鼠感染性心內膜炎動物模式中,發現贅疣上同時有細菌eDNA及NETs的存在。體外生物膜形成能力分析結果發現,鈣離子可刺激轉糖鏈球菌之eDNA釋放並促進細菌生物膜形成,而經自體溶解蛋白抑制劑PAS(polyanetholesulfonic acid)及DNase I處理後,也發現可有效抑制轉糖鏈球菌形成生物膜之能力,說明轉糖鏈球菌藉由自體溶解所放出之eDNA在體外形成生物膜中扮演重要角色。此外,在模擬體內生物膜形成之體外模式中加入嗜中性白血球,可觀察到有NETs的釋放並造成轉糖鏈球菌生物膜增厚之現象; DPI及DNase I可明顯抑制生物膜增厚之現象。此外,進一步利用對大鼠感染性心內膜炎動物模式給予DNase I,結果發現靜脈注射DNase I可抑制贅疣上NETs形成,並降低贅疣細菌數目及贅疣大小。綜合本篇實驗結果,證明細菌的eDNA及NETs皆參與在感染性心內膜炎中轉糖鏈球菌形成生物膜之過程,對於未來發展感染性心內膜炎之治療方法上,提供了新的策略。 | zh_TW |
| dc.description.abstract | Biofilm is an important virulence trait for Streptococcus mutans to cause infective endocarditis (IE) which is an infectious disease with high recurrence and mortality rate. After entering into bloodstream, S. mutans can adhere to the injured valve and form vegetation, a compact fibrin-platelet bacterial biofilm, to cause IE. So far, the mechanism of vegetation formation remains unclear. It has been evidenced that extracellular DNA (eDNA) released via bacteria lysis, is required for bacteria biofilm formation, and neutrophil extracellular traps (NETs) could promote thrombosis by trapping and activating platelets, which may facilitate the vegetation formation. Therefore, we hypothesize that both bacterial eDNA and NETs may be involved in S. mutans biofilm formation on the injured valve. In the rat experimental IE model, we found that both bacterial eDNA and NETs exist in vegetation. The calcium ions could enhance S. mutans biofilm formation and eDNA releasing in the in vitro biofilm assay, and the enhancement could be inhibited by PAS and DNase I treatment. Neutrophils could enhance S. mutans biofilm formation in platelet-rich plasma and this effect could be inhibited by DPI and DNase I treatment. Administration of the bovine pancreatic DNase I could reduce the NETs formation, vegetation size and colonized bacterial number in the rat experimental IE model. Taken together, these results suggest that both bacterial eDNA and NETs play important roles in S. mutans biofilm formation in vitro and in the rat experimental IE model. These results provide important information for developing new strategies for controlling IE. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T16:29:46Z (GMT). No. of bitstreams: 1 ntu-100-R98445113-1.pdf: 1462228 bytes, checksum: cb24ef807eb871079f547a60552093e9 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 目錄
口詴委員會審定書 2 誌謝 3 中文摘要 4 Abstract 5 目錄 6 壹、 緒論 9 一、轉糖鏈球菌(Streptococcus mutans) 9 二、感染性心內膜炎(infective endocarditis,IE) 9 三、細菌引起感染性心內膜炎之相關毒性因子 10 四、生物膜(biofilm) 11 五、細菌自體溶解(autolysis)與生物膜形成 12 六、嗜中性白血球(neutrophils)13 七、嗜中性白血球胞外網狀結構(neutrophil extracellular traps,NETs) 14 八、研究目的與實驗設計16 貳、實驗材料與方法 17 一、轉糖鏈球菌之培養 17 二、轉糖鏈球菌之轉型作用 17 三、體外生物膜形成模式 17 1. 結晶紫染色 17 2. 共軛焦顯微鏡觀察生物膜形成及定量方法 18 四、體外生物膜eDNA之萃取及定量方法 19 五、實驗性心內膜炎之老鼠模式的建立 20 六、轉糖鏈球菌感染老鼠方法 20 七、偵測感染性心內膜炎贅疣中eDNA之方法 21 八、偵測感染性心內膜炎贅疣中NETs之方法 21 九、感染性心內膜炎贅疣中eDNA之萃取方法及PCR 21 十、人類嗜中性白血球之分離及純化 22 十一、在模擬體內生物膜形成之體外模式誘發NETs 22 十二、給予感染性心內膜炎大鼠DNase I之方法 23 (流程參考附圖一) 23 1. DNase I配置及給予大鼠之方法 23 2. 定量血液中轉糖鏈球菌菌數之方法 23 3. 定量贅疣上轉糖鏈球菌菌數之方法 23 4. 大鼠血清中DNase I活性之分析方法 24 參、結果 25 第一部份:細菌eDNA及NETs存在於轉糖鏈球菌引發之感染性心內膜炎之贅疣中 25 1. eDNA存在於轉糖鏈球菌引發之感染性心內膜炎之贅疣中 25 2. NETs存在於轉糖鏈球菌引發之感染性心內膜炎之贅疣中 25 3. 聚合酶連鎖反應確認細菌eDNA及NETs存在於贅疣中 25 第二部份:轉糖鏈球菌自體溶解釋放之eDNA,幫助轉糖鏈球菌在體外形成生物膜 26 1. 鈣離子可刺激轉糖鏈球菌體外生物膜形成及eDNA釋放 26 2. 自體溶解蛋白抑制劑PAS可抑制轉糖鏈球菌體外生物膜形成及eDNA釋放 26 3. DNase I可有效抑制轉糖鏈球菌體外生物膜形成 27 第三部份:嗜中性白血球釋放之NETs對轉糖鏈球菌在體外形成生物膜非常重要 28 1. 轉糖鏈球菌在富含血小板血漿中形成之生物膜可誘發嗜中性白血球釋放NETs 28 2. 嗜中性白血球釋放之NETs可幫助轉糖鏈球菌在富含血小板中形成生物膜 28 第四部份:Bovine pancreatic DNase I在大鼠感染性心內膜炎動物模式中對轉糖鏈球菌生物膜形成的影響 29 肆、討論 31 一、 細菌eDNA及NETs存在於轉糖鏈球菌引發之感染性心內膜炎之贅疣中 31 二、 轉糖鏈球菌經自體溶解釋放出之eDNA,可幫助轉糖鏈球菌形成生物膜 32 三、 嗜中性白血球釋放之NETs對轉糖鏈球菌在體外形成生物膜非常重要 34 四、 Bovine pancreatic DNase I在大鼠感染性心內膜炎動物模式中對轉糖鏈球菌生物膜形成的影響 36 五、 結論 38 伍、參考文獻 40 圖表目錄 圖一、在大鼠感染性心內膜炎之贅疣中發現細菌eDNA及NETs 48 圖二、鈣離子對於刺激轉糖鏈球菌體外生物膜形成及eDNA釋放之影響 49 圖三、自體溶解蛋白抑制劑PAS對於鈣離子所刺激之轉糖鏈球菌生物膜形成及eDNA釋放之影響 50 圖四、DNase I對於轉糖鏈球菌體外生物膜形成之影響 51 圖五、DNase I處理對於鈣離子所刺激之轉糖鏈球菌生物膜形成之影響之共軛焦顯微鏡定量結果 52 圖六、轉糖鏈球菌在富含血小板血漿中形成之生物膜對嗜中性白血球釋放NETs之影響 53 圖七、嗜中性白血球釋放之NETs對於轉糖鏈球菌在富含血小板中形成生物膜之影響 54 圖八、靜脈注射Bovine pancreatic DNase I至大鼠感染性心內膜炎之動物模式可去除贅疣上NETs之形成、抑制贅疣形成及降低贅疣菌量 55 圖九、大鼠血清中DNase I活性分析 57 附圖一、給予感染性心內膜炎大鼠DNase I之方法 58 | |
| dc.language.iso | zh-TW | |
| dc.subject | 生物膜 | zh_TW |
| dc.subject | 感染性心內膜炎 | zh_TW |
| dc.subject | 胞外去氧核醣核酸 | zh_TW |
| dc.subject | infective endocarditis | en |
| dc.subject | extracellular DNA | en |
| dc.subject | biofilm | en |
| dc.title | 胞外去氧核醣核酸在感染性心內膜炎中對轉糖鏈球菌形成生物膜所扮演之角色 | zh_TW |
| dc.title | Role of Extracellular DNA in Streptococcus mutans Biofilm Formation in Infective Endocarditis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王萬波,董馨蓮 | |
| dc.subject.keyword | 胞外去氧核醣核酸,生物膜,感染性心內膜炎, | zh_TW |
| dc.subject.keyword | extracellular DNA,biofilm,infective endocarditis, | en |
| dc.relation.page | 58 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-07-19 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 微生物學研究所 | zh_TW |
| 顯示於系所單位: | 微生物學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 1.43 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
