Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38241
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor邱文英
dc.contributor.authorSheng-Pin Yangen
dc.contributor.author楊勝斌zh_TW
dc.date.accessioned2021-06-13T16:28:36Z-
dc.date.available2006-07-20
dc.date.copyright2005-07-20
dc.date.issued2005
dc.date.submitted2005-07-13
dc.identifier.citationBaki Hazer, Robert W. Lenz, and R. Clinton: Bacterial production of poly-3-hydroxyalkanoates containing aryalkyl substituent groups. Polymer 1996; 37: 5951-5957.
Cromwick, A. M., Foglia, T., and Lenz, R. W.: The Microbial Production of Poly(hydroxyalkanoates) from Tallow. Appl. Microbiol. Biotechnol. 1996; 46: 464-469.
C. S. K. Reddy, R. Ghai, Rashmi, V. C. Kalia: Review paper, Polyhydrox- yalkanoates: an overview. Bioresource technology 2003; 87: 137-146.
Dong Min Chung, Mun Hwan Choi, Jae Jun Song , Sung Chul Yoon, Inn-Kyu Kang, Nam Eung Huh: Intracellular degradation of two structurally different polyhydroxyalkanoic acids accumulated in Pseudomonas putida and Pseudomonas citronellolis from mixtures of octanoic acid and 5-phenylvaleric acid. International Journal of Biological Macromolecules 2001; 29: 243-250.
Do Young Kim, Saet Byel Jung, Gang Guk Choi, Young Baek Kim, Young Ha Rhee: Biosynthesis of polyhydroxyalkanoate copolyester containing cyclohexyl group by Pseudomonas oleovorans. International Journal of Biological Macromolecules 2001; 29: 145-150
Estelle Renard, Pierre-Yves Tanguy, Eric Samain, Phillippe Guerin: Synthesis of novel graft polyhydroxyalkanoates. Macromol. Symp. 2003; 197: 11-18.
Guocheng Du, Jian Yu:Metabolic analysis on fatty acid utilization by Pseudomonas oleovorans: mcl-poly(3-hydroxyalkanoates) synthesis versus β-oxidation. Process Biochemistry 2002; 38:325-332.
Halil KOCER, Mehlika BORCAKLI, Songun DEMIREL: Production of bacterial polyesters from some various new substrates by Alcaligenes eutrophus and Pseudomonas oleovorans. Turk. J. Chem. 2003; 27:365- 373.
Helmut Brandl, Richard A. Gross, Robert W. Lenz, and R. Clinton Fuller: Pseudomonas oleovorans as a source of Poly(β-hydr- oxyalkanoates) for Potential Application as Biodegradable Polyesters. Applied and environmental microbiology 1988; 54: 1977-1982.
Jae Jun Song, Sung Chul Yoon, Seungju M. Yu., Robert W. Lenz: Differential scanning calorimetric study of poly(3-hydroxyoctanoate) inclusion in bacterial cells. International Journal of Biological Macromolecules 1998; 23: 165-173.
Joanne M. Curley, Robert W. Lenz, R. Clinton Fuller: 13C n.m.r. spectroscopy in living cells of Pseudomonas oleovorans. Polymer 1997; 38: 5313-5319.
Joanne M. Curley, Robert W. Lenz, R. Clinton Fuller: Sequential production of two different polyesters the inclusion bodies of Pseudomonas oleovorans. International Journal of Biological Macromolecules 1996; 19: 29-34.
Katharia Fritzsche et al.:An unusual bacterial polyester with a phenyl pendant group. Makromol. Chem. 1990; 191: 1957-1965.
Katsutoshi Hori, Kazuo Soga, and Yoshiharu Doi: Production of Poly (3-hydroxyoctanoate)-co-3-hydroxy-ω-fluoroalkanoates) by Pseudomon- as oleovorans from 1-fluorononate and gluconate. Biotechnology Letters 1994; 5: 501-506.
Kim, B. S., Lee, S. C., Lee, Y. P., et al.: Production of poly (3-hy- droxybutyric-co-3-hydroxyvaleric acid) by fed-batch culture of Alcaigenes eutrophus with substrate control using on-line glucose analyer. Enzyme Micrbo. Technol. 1994; 16:556-561.
Kuno Jung, Wil Hazenberg, Maria Prieto, Bernard Witholt: Two-stage continuous process development for the production of Medium-Chain-Length Poly(3-hydroxyalkanoates). Biotechnology and bioengineering 2001; 72: 19-24.
K. Sudesh, H. Abe, Y. Doi: Synthesis, structure and properties of poly- hydroxyalkanoates: biological polyesters. Prog. Polym. Sci. 2000; 25: 1503-1555.
Michele B. Kellerhals, Wil Hazenberg, and Bernard Witholt: High cell density fermentation of Pseudomonas oleovorans for the production of mcl-PHAs in two-liquid phase media. Enzyme and Microbial Technology. 1999; 24:111-116.
M. Y. Lee, W. H. Park, R. W. Lenz: Hydrophilic bacterial polyester modified with pendant hydroxyl groups. Polymer 2000; 41:1703-1709.
N. Kurth, E. renard, F. Brachet, D. Robic, Ph. Guerin, R. Bourbouze: Poly(3-hydroxyoctanoate) containing pendant carboxylic groups for the preparation of nanoparticles aimed at drug transport and release. Polymer 2002; 43:1095-1101.
Norma Galego, Chavati Rozsa, Ruben Sanchez, Juan Fung, Analia Vazquez, Julio Tomas: Characterization and application of Poly(β-hydr- oxyalkanoates) family as composite biomaterials. Polymer Testing 2000; 19: 485-492.
Ohyoung Kim and Richard A. Gross: Microbial Synthesis of Poly(β-hydr- oxyalkanoates) Containing Fluorinated Side-Chain Substituents. Macromolecules 1996; 29: 4572-4581.
Richard A. Gross, Christopher DeMello, Robert W. Lenz: Biosynthesis and characterization of Poly(β-hydroxyalkanoates) produced by Pseudomonas oleovorans . Macromolecules 1989; 22:1106-1115.
Sang Yup Lee: Review: Bacterial polyhydroxyalkanoates. Biotechnology and Bioengineering 1996; 49: 1-14
Takeshi Imamura, Takashi Kenmoku, Tsutomu Honma, shin Kobayashi, Tetsuya Yano: Direct biosynthesis of poly(3- hydroxyoctanoates)bearing epoxide groups. International Journal of Biological Macromolecules 2001; 29: 295-301.
Y. B. Kim, R. W. Lenz, R. C. Fuller: Preparation and Characterization of Poly(β-hydroxyalkanoates) Obtained from Pseudomonas oleovorans Grown with Mixtures of 5-Phenylvaleric Acid and n-Alkanoic Acids. Macromolecules 1991; 24: 5256-5260.
Y. Doi, A. Steinbuhel: Biopolymers: Polyesters Ⅱ: Properties and Chemical Synthesis. Weinheim 2002; 3b.
Young B. Kim, R. W. Lenz, and R. Clinton Fuller: Poly(β-hydroxy- alkanoates) Copolymers Containing Brominated Repeating Units Produced by Pseudomonas oleovorans. Macromolecules 1992; 25: 1825-1857.
Y. B. Kim, R. W. Lenz, and R. C. Fuller: Poly(3- hydroxyoctanoates) containing unsaturated repeating unit produced by Pseudomonas oleovorans. Journal of Polymer Science: Part A: Polymer Chemistry 1995; 33: 1367-1374.
Young Baek Kim, Young Ha Rhee, Sin-Ho Han, Gwi Suk Heo, and Jin Seog Kim: poly-3-hydroxyalkanoates Produced from Pseudomonas oleovorans Growth with ω-Phenoxyalkanoates. Macromolecules 1996; 29: 3432-3435.
Young Baek Kim, Young Ha Rhee, Robert W. Lenz, and R. Clinton Fuller: poly(3- hydroxyoctanoate)s produced by Pseudomonas oleovorans growth by feeding nonanoic acid and 10-undecnoic acid in sequence. Polymer journal 1997; 29:894-898.
Yves Poirier, Christiane Nawrath, and Chris Somerville: Production of Polyhydroxyalkanoates, a Family of Biodegradable Plastic and Elastomers, in Bacteria and Plants. Bio/Technology 1995; 13: 142-150.
周士農、黃世佑:氮源對黎豆轉植毛狀跟生長及二次代謝產物之影響以改進噴霧滴流式反應器之性能,碩士論文,國立台灣大學化學工程研究所(2004)。
郭子青、邱文英、黃世佑:由微生物生產功能性PHA及其結構分析,碩士論文,國立台灣大學高分子科學與工程學研究所(2004)。
簡志青:淺談生物系生物可降解性塑膠,化工資訊與商情月刊(1993)。
顏曉楓、陳志成:利用pH-stat控制策略進行高密度培養Haloferax mediterranei 生產poly-β-hydroxybutyrate之研究,碩士論文,大同大學生物工程研究所(2001)。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38241-
dc.description.abstract本研究為利用微生物發酵生產生物可分解材料,實驗中除探討微生物之最適化環境外,另嘗試以不同結構之特殊碳源饋料,鑑定生合成產物之結構及物性,期望能獲得含特殊官能基之聚羥基烷酯。研究中採用之菌株為Pseudomonas oleovorans,當以6 g/L辛酸鈉(sodium octanoate)作為碳源,4 g/L硫酸銨為氮源進行發酵培養時,20小時所得菌體量為3.38 g/L,PHA累積量為0.71 g/L,PHA佔菌體乾重的26 %;當氮源添加0.66 g/L硫酸銨時,結果顯示對於此菌體為限氮環境,因此造成PHA大量累積,發酵20小時之產量可提升到 1.4 g/L,PHA content為46%;如改變氮源為yeast extract時,菌體生長及PHA累積的狀況都較佳,添加6 g/L辛酸鈉及16 g/L yeast extract,菌量可提高至5.84 g/L,饋入8 g/L辛酸鈉及2 g/L yeast extract時,PHA累積量達到1.63 g/L。
P. oleovorans饋以不同碳源發酵培養時,所生產之PHA結構也隨之改變,以辛酸鈉及壬酸為碳源時,分別可獲得PHO(poly(3-hydroxyoctanoate)及PHHN (Poly(3-hydroxyheptanoate-co-3-hydroxynonanoate))為主之共聚合物;當添加十一烯酸(undecylenic acid)為碳源時,可生合成由3-hydroxy-10-undecenoate,3-hydroxy-7-noneneoate,3-hydroxy-6-hepteneoate三種重複單元所組成的不飽和共聚物;如以苯戊酸(5-phenylvaleric acid)饋加,此聚酯高分子側鏈末端將為含有苯環結構之(Poly(3-hydroxy- 5-phenylvalerate))PHPV。藉由引入各種不同官能基之功能性可分解材料,將可增加應用的範圍。
zh_TW
dc.description.abstractBiosynthesis of biodegradable polymers using Pseudomonas oleovorans was conducted. Manipulations of carbon source as well as ingredients of fermentation medium were investigated. PHA (ployhydroxyalkanoate) incorporated with functional groups was anticipated. 3.38 g/L of dry cell weight and 26% of PHA content were obtained using P. oleovorans when dosing 6 g/L of sodium octanoate and 4 g/L of ammonium sulfate. 1.4 g/L of PHA were attained under a limitation of nitrogen source. PHA content was 46 % dry cell weight. If nitrogen source of medium were changed from ammonium sulfate to yeast extract, both cell concentration and weight of PHA were enhanced respectively. Fermentation with dosages of 6 g/L sodium octanoate and 16 g/L yeast extract were resulted in a high cell concentration (5.84 g/L). When dosing 8 g/L of sodium octanoate and 2 g/L of yeast extract, high PHA concentration was obtained (1.63 g/L).
Different products of PHA were obtained by dosage of different carbon sources. Both PHO (poly(3-hydroxyoctanoate)) and PHHN (poly(3-hydroxyheptanoate-co-3-hydroxynonanoate))were the major co- polymers obtained by dosaging sodium octanoate and nonanoic acid respectively as a sole carbon source. PHA contained 3-hydroxy- 10-undecenoate,3-hydroxy-7-noneneoate and 3-hydroxy-6-hepteneoate units were obtained when feeding undecylenic acid as a sole carbon source. When dosing 5-phenylvaleric acid, PHPV(Poly(3-hydroxy-5- phenylvalerate)) with phenyl group were be synthesized. Introducing the various functional groups into the structure of PHAs facilitates the development of synthesizing new functionality biopolymers for many uses.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T16:28:36Z (GMT). No. of bitstreams: 1
ntu-94-R92527053-1.pdf: 2894274 bytes, checksum: c1471b223490e5bfdfd0e4d21f72a8ae (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents中文摘要........................................................................................................I Abstract.........................................................................................................Ⅲ
目錄…………………………………………..………………….………....Ⅴ
圖索引……………………………………………………………………. Ⅸ
表索引…………………………………………………………………...XIII
第一章 緒 論....……..………………………………....….........................1
1-1 緒論………………………………………………………………….1
1-2 研究動機…………………………………………………………….2
1-3 研究方向…………………………………………………………….2
第二章 文獻回顧..……..………………....................................3
2-1生物可分解性材料........………………..............................................3
2-2 PHA之簡介..…………………...........................................................4
2-3 MCL-PHAs與PHO之簡介……..……….……......………………...5
2-4 Pseudomonas oleovorans利用脂肪酸之代謝路徑……………. ..…7
2-5具特殊官能基之PHA...…………...………………..…………….…8
2-6高菌體濃度之發酵培養…………………...………………………...9
2-7 PHO在菌體中之形態…………………...………………………....10
2-8 PHA之分解…………………...…………………………….……...12
第三章 材料與方法........………………………….....................................15
3-1 實驗藥品與試劑.......………............................................................15
3-2 實驗儀器.........………………………..............................................17
3-3 實驗流程與方法...........….……………………..............................20
3-3.1 菌種來源............………………..………...............................21
3-3.2 培養基組成….....………………………................................21
3-3.3 菌種活化與種菌培養………………………………….........22
3-3.4 發酵槽培養………………………………………………….23
3-3.5 產物與基質之分析方法…………………………………….24
3-3.5.1 菌體乾重的測定………………………………………..24
3-3.5.2 PHA之萃取與純化………….………………………...24
3-3.5.3 銨氮濃度之測定…..……………………………………24
3-3.5.4 核磁共振儀(NMR)分析………………………………...25
3-3.5.5 微差熱掃描分析儀(DSC)分析……..…..………..……..26
3-3.5.6 熱重量損失分析儀(TGA)分析…..………….…………26
3-3.5.7 穿透式電子顯微鏡(TEM)觀察…………....…………...26
3-3.5.8 凝膠滲透層析儀(GPC)分析…...…………..…………...26
3-4 Pseudomonas oleovorans發酵培養之最適化探討……….……….27
3-4.1 初始pH值之影響……………………...................................27
3-4.2 氮源濃度對菌體及PHA累積量影響之探討……..…….…27
3-4.3 C/N ratio改變碳源濃度實驗………………….…………..27
3-4.4 以辛酸鈉為碳源發酵之生長曲線……………...……..……28
3-4.5 添加醋酸對菌體及PHA累積之影響……...……..……......28
3-4.6 改變氮源為yeast extract對菌體生長影響之探討…………29
3-4.6.1 不同種類之氮源對菌體與PHA累積之影響…………..29
3-4.6.2 比較不同種類之氮源於不同時間取樣之差異…………..29
3-4.6.2 探討不同濃度之碳源及yeast extract對菌體之效應…....29
3-4.7 氧氣對菌體生長及累積 PHA之影響……………….….…..30
3-4.8 發酵槽培養實驗…………………….………………...….…..30
3-5 饋加不同特殊碳源所得產物之結構鑑定及其物性測定…..…….30
3-5.1 以辛酸鈉為碳源發酵實驗…………………….…………....31
3-5.2 以壬酸為碳源發酵實驗………………………………….....31
3-5.3 以十一烯酸為碳源發酵實驗…………………...…………..31
3-5.4 以辛酸鈉及十一烯酸之混合碳源發酵實驗……………….31
3-5.5 以辛酸鈉為碳源培養至20小時饋加十一烯酸實驗…..….32
3-5.6 以苯戊酸為碳源發酵實驗………………………………….32
3-5.7 以辛酸鈉與苯戊酸混合碳源發酵實驗…………………….32
3-6使用混合碳源發酵產物之形式探討………………………….…...33
3-6.1辛酸鈉與十一烯酸混合碳源發酵產物之形式探討..……....33
3-6.2辛酸鈉與苯戊酸混合碳源發酵產物之形式探討……..…....33
3-7電子顯微鏡觀察菌體實驗…………………………….…………...33
第四章 結果與討論.......…….…..……………….......................................34
4-1 以Pseudomonas oleovorans 發酵培養之最適化探討....…...……34
4-1.1 初始pH值之影響….......…….………………………………34
4-1.2 氮源濃度對菌體及PHA累積量影響之探討.........................35
4-1.3 C/N ratio改變碳源濃度實驗結果………………………...39
4-1.4 以辛酸鈉為碳源發酵之生長曲線.……...…..……………...40
4-1.5 添加醋酸對菌體及PHA累積之影響……………..…..……41
4-1.6改變氮源為yeast extract對菌體生長影響之探討…………43
4-1.6.1 不同種類之氮源對菌體與PHA累積之影響…..…….43
4-1.6.2 比較不同種類之氮源於不同時間取樣之差異……….45
4-1.6.3 探討不同濃度之yeast extract及碳源對菌體之效應...45
4-1.7 氧氣對菌體生長及PHA累積之影響…………..…………..48
4-1.8 發酵槽培養實驗結果…………...…………………………..51
4-2 饋加不同特殊碳源所得產物之結構鑑定及其物性測定………...53
4-2.1 以辛酸鈉為碳源發酵之結果……………………………….53
4-2.2 以壬酸為碳源發酵之結果………………………………….57
4-2.3 以十一烯酸為碳源發酵之結果…………………………….61
4-2.4 以辛酸鈉及十一烯酸之混合碳源發酵結果……………….66
4-2.5 以辛酸鈉為碳源培養至20小時饋加十一烯酸發酵結果....78
4-2.6 以苯戊酸為碳源發酵結果………………………………….81
4-2.7 以辛酸鈉與苯戊酸混合碳源發酵實驗結果……………….85
4-3使用混合碳源發酵產物之形式探討……………………….……...95
4-3.1辛酸鈉與十一烯酸混合碳源發酵產物之形式探討…….….95
4-3.2辛酸鈉與苯戊酸混合碳源發酵產物之形式探討……….….96
4-4以電子顯微鏡觀察菌體實驗結果……………………….…..…...101
第五章 結 論...........…………………….........……...…..........................103
參考文獻..................……………………......………….............................105
圖索引
圖2-1 PHA的碳循環…………………………………………………...3
圖2-2聚羥基烷酯(PHA)結構圖…………………………………….4
圖2-3 Pseudomonas oleovorans 以壬酸培養之代謝路徑………….…8
圖2-4 PHA在菌體中與菌體外之形態………………………..……....13
圖2-5 PHA分解酵素在PHB單晶的分解機制…………….…………14
圖3-1 Pseudomonas oleovorans發酵生產PHA之實驗流程圖……...20
圖4-1滅菌前pH調至7.0與7.5發酵培養後之菌量、PHA累積量及乾菌重中PHA………………………………………………....34
圖4-2 於初始培養基中添加不同濃度之氮源對菌量之影響…….....36
圖4-3 於初始培養基中添加不同濃度之氮源對PHA量之影響.......37
圖4-4 初始培養基中添加不同濃度氮源對PHA佔乾菌重比影響…38
圖4-5不同初始C/N ratio發酵所得之乾菌重……………………….39
圖4-6不同初始C/N ratio發酵所得之PHA量………..…………….40
圖4-7以辛酸鈉為碳源發酵所得之生長曲線…………….………….41
圖4-8額外加不同濃度醋酸發酵所得之結果……………….……….42
圖4-9添加不同氮源對乾菌重及PHA累積量之影響………………44
圖4-10不同氮源、不同時間所得之乾菌重及PHA累積量…..……46
圖4-11不同濃度碳源及yeast extract之乾菌重及PHA累積量……47
圖4-12不同氧氣濃度對菌體及PHA累積量所產生之影響………..49
圖4-13以發酵槽培養時菌量、PHA累積量、溶氧電位(DO)、pH值、
氧化還原電位(ORP)、rH電位與氮源濃度之變化………....52
圖4-14以辛酸鈉為碳源發酵所得產物之1H-NMR……………..…...55
圖4-15以辛酸鈉為碳源發酵所得產物之13C-NMR……………...…56
圖4-16以辛酸鈉為碳源所得產物PHO之熱重量損失分析儀圖…..56
圖4-17以辛酸鈉為碳源所得產物PHO之微差熱掃描分析儀圖…..57
圖4-18以壬酸為碳源發酵所得產物之1H-NMR………………….....59
圖4-19以壬酸為碳源發酵所得產物之13C-NMR……………............60
圖4-20以壬酸為碳源所得產物PHHN之微差熱掃描分析儀圖.......61
圖4-21以十一烯酸為碳源發酵所得產物之1H-NMR.........................64
圖4-22以十一烯酸為碳源發酵產物之13C-NMR................................65
圖4-23以十一烯酸為碳源所得產物之DSC圖……………………...66
圖4-24以辛酸鈉及十一烯酸混合碳源發酵所得之菌量及PHA量...69
圖4-25以辛酸鈉及十一烯酸混合碳源發酵產物之1H-NMR,預培養:U.A.,主發酵:S.O. + U.A. = 2:1………..................70
圖4-26以辛酸鈉及十一烯酸混合碳源發酵產物之1H-NMR,預培養:U.A.,主發酵:S.O. + U.A. = 1:1…………................71
圖4-27以辛酸鈉及十一烯酸混合碳源發酵產物之1H-NMR,預培養:U.A.,主發酵:S.O. + U.A. = 1:2……........................72
圖4-28以辛酸鈉及十一烯酸混合碳源發酵產物之1H-NMR,預培養:S.O.,主發酵:S.O. + U.A. = 2:1……........................73
圖4-29以辛酸鈉及十一烯酸混合碳源發酵產物之1H-NMR,預培養:S.O.,主發酵:S.O. + U.A. = 1:1……........................74
圖4-30以辛酸鈉及十一烯酸混合碳源發酵產物之1H-NMR,預培養:S.O.,主發酵:S.O. + U.A. = 1:2……………….…..75
圖4-31 以辛酸鈉及十一烯酸混合碳源發酵產物之DSC圖,預培養:S.O.,主發酵:S.O. + U.A. = 2:1………………..……….77
圖4-32以辛酸鈉及十一烯酸混合碳源發酵產物之DSC圖,預培養:S.O.,主發酵:S.O. + U.A. = 1:1………….…………….77
圖4-33以辛酸鈉及十一烯酸混合碳源發酵產物之DSC圖,預培養:U.A.,主發酵:S.O. + U.A. = 2:1………….…………….78
圖4-34以辛酸鈉培養至中途饋加十一烯酸所得產物之1H-NMR….80
圖4-35以辛酸鈉培養至中途饋加十一烯酸所得產物之DSC圖…...81
圖4-36以苯戊酸發酵培養所得之菌量與PHA累積量……..………83
圖4-37以苯戊酸發酵培養所得之1H-NMR…………………………84
圖4-38以辛酸鈉與苯戊酸混合碳源發酵所得菌量與PHA累積量..86
圖4-39辛酸鈉0.75 g/L與苯戊酸0.16 g/50 mL發酵產物之1H-NMR……………………………………………………..87
圖4-40辛酸鈉0.75 g/L與苯戊酸0.08 g/50 mL發酵產物之1H-NMR……………………………………………………..88
圖4-41辛酸鈉0.75 g/L與苯戊酸0.04 g/50 mL發酵產物之1H-NMR……………………………………………………..89
圖4-42辛酸鈉0.75 g/L與苯戊酸0.02 g/50 mL發酵產物之1H-NMR……………………………………………………..90
圖4-43辛酸鈉與苯戊酸混合碳源發酵產物之13C-NMR………...…91
圖4-44辛酸鈉0.75 g/L與苯戊酸0.08 g/50 mL發酵產物之DSC圖,加熱速率為10℃/min………………………………………...93
圖4-45辛酸鈉0.75 g/L與苯戊酸0.04 g/50 mL發酵產物之DSC圖,加熱速率為10℃/min………………………………………...93
圖4-46辛酸鈉0.75 g/L與苯戊酸0.04 g/50 mL發酵產物之DSC圖,加熱速率為20℃/min………………………………………...94
圖4-47辛酸鈉0.75 g/L與苯戊酸0.02 g/50 mL發酵產物之DSC圖,加熱速率為10℃/min………………………………………...94
圖4-48以純PHO與純PHU(十一烯酸發酵產物)混摻後之DSC圖…95
圖4-49以辛酸鈉與苯戊酸混合碳源發酵原產物之1H-NMR….……97
圖4-50以辛酸鈉與苯戊酸混合發酵產物第一次分離上層液1H-NMR……………………………………………………..97
圖4-51以辛酸鈉與苯戊酸混合發酵產物第一次分離沉澱之1H-NMR……………………………………………………..98
圖4-52 以辛酸鈉與苯戊酸混合發酵產物第一次分離之上層液經過第二次分離上層液之1H-NMR…………………….………98
圖4-53 以辛酸鈉與苯戊酸混合發酵產物第一次分離之沉澱經過第二次分離上層液之1H-NMR…………...…………..………99
圖4-54 以辛酸鈉與苯戊酸混合發酵產物第一次分離之沉澱經過第二次分離沉澱之1H-NMR………...………………..………99
圖4-55 以辛酸鈉與苯戊酸混合碳源發酵產物之分離圖…….……100
圖4-56 以辛酸鈉限氮狀況下培養之TEM圖……………..……..…101
圖4-57 以檸檬酸培養之TEM圖……………………………..….…102







表索引
表2-1 MCL-PHA之物理性質………………………….………………6
表2-2各種PHA與polypropylene之物性與熱性質比較…………….7表2-3利用Pseudomonas putida與Pseudomonas oleovorans 發酵所饋
基質與生合成之含特殊官能基產物…………..…………….....9
表3-1原始固態培養基之組成………………...…..………………….21
表3-2原始液態培養基之組成…………….……………………….....21
表3-3微量元素組成…………………….…………………………….22
表4-1以辛酸鈉發酵產物之1H-NMR吸收峰位置與面積……..……55
表4-2以辛酸鈉發酵產物之13C-NMR吸收峰位置…………….…….55
表4-3以壬酸發酵產物之1H-NMR吸收峰位置與面積……...............59
表4-4以壬酸發酵產物之13C-NMR吸收峰位置………......................60
表4-5以十一烯酸發酵產物之1H-NMR吸收峰位置與面積…..….....64
表4-6以十一烯酸發酵產物之13C-NMR吸收峰位置………………..65
表4-7-1以十一烯酸及辛酸鈉發酵產物1H吸收峰位置與面積(圖4-25)…………………………………………………………70
表4-7-2以十一烯酸及辛酸鈉發酵產物1H吸收峰位置與面積(圖4-26)…………………………………………………………71
表4-7-3以十一烯酸及辛酸鈉發酵產物1H吸收峰位置與面積(圖4-27)…………………………………………………………72
表4-7-4以十一烯酸及辛酸鈉發酵產物1H吸收峰位置與面積(圖4-28)…………………………………………………………73
表4-7-5以十一烯酸及辛酸鈉發酵產物1H吸收峰位置與面積(圖4-29)…………………………………………………………74
表4-7-6以十一烯酸及辛酸鈉發酵產物1H吸收峰位置與面積(圖4-30)…………………………………………………………75
表4-8不同比例辛酸鈉與十一烯酸碳源發酵所得產物之組成及物性……………………………………………………………...76
表 4-9 以辛酸鈉培養至中途饋加十一烯酸發酵產物1H吸收峰位置與面積………………………………………………………...80
表4-10以苯戊酸發酵產物之1H-NMR及吸收峰位置及面積…………..…..…………………………………………...84
表4-11-1 以辛酸鈉與苯戊酸發酵產物之1H吸收峰位置及面積(圖4-39)………………………………………………...…….87
表4-11-2 以辛酸鈉與苯戊酸發酵產物之1H吸收峰位置及面積(圖4-40)………………………………………………...…….88
表4-11-3 以辛酸鈉與苯戊酸發酵產物之1H吸收峰位置及面積(圖4-41)………………………………………………...…….89
表4-11-4 以辛酸鈉與苯戊酸發酵產物之1H吸收峰位置及面積(圖4-42)………………………………………………...…….90
表4-12以辛酸鈉與苯戊酸發酵產物之13C-NMR吸收峰位置………………………………………………………..…...91
表4-13不同比例之辛酸鈉與苯戊酸碳源所得產物之組成比例與物性……………………………………………………..……...92
dc.language.isozh-TW
dc.title以發酵法生產具官能基之聚酯材料zh_TW
dc.titleProduction of Polyester Materials with Functional Groups by Fermentationen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃世佑,董崇民,謝國煌
dc.subject.keyword聚羥基烷酯,辛酸鈉,十一烯酸,苯戊酸,zh_TW
dc.subject.keywordpolyhydroxyalknoates,sodium octanoate,undecylenic acid,5-phenylvaleric acid,en
dc.relation.page109
dc.rights.note有償授權
dc.date.accepted2005-07-14
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  目前未授權公開取用
2.83 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved