Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38237
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 謝松蒼 | |
dc.contributor.author | Hou-Yu Chiang | en |
dc.contributor.author | 江皓郁 | zh_TW |
dc.date.accessioned | 2021-06-13T16:28:32Z | - |
dc.date.available | 2006-08-02 | |
dc.date.copyright | 2005-08-02 | |
dc.date.issued | 2005 | |
dc.date.submitted | 2005-07-13 | |
dc.identifier.citation | Badylak SF, Record R, Lindberg K, Hodde J, Park K. Small intestinal submucosa: a substrate for in vitro cell growth. J Biomater Sci Polym Ed 1998; 9:863–78
Bailey SB, Eichler ME, Villadiego A, Rich KM. The influence of fibronectin and laminin during Schwann cell migration and peripheral nerve regeneration through silicon chambers. J Neurocytol 1993; 22: 176– 184 Battiston B, Tos P, Cushway TR, Geuna S. Nerve repair by means of vein filled with muscle grafts I. Clinical results. Microsurgery 2000; 20:32–36 Bender MD, Bennett JM, Waddell RL, Doctor JS, Marra KG. Multi-channeled biodegradable polymer/cultispher composite nerve guides. Biomaterials 2004; 25: 1269-1278 Bisby MA. Regeneration of peripheral nervous system axons. In: Waxman SG, Kocsis JD, Stys PK, eds. The axons: structure, function and pathophysiology. New York: Oxford University Press; 1995: 553-577 Brandt J, Dahlin LB, Lundborg G. Autologous tendons used as grafts for bridging peripheral nerve defects. J Hand Surg [Br.] 1999; 24:284–90 Brunelli GA, Vigasio A, Brunelli GR. Different conduits in peripheral nerve surgery. Microsurgery 1994; 15: 176-178 Bunge RP. Expanding roles for the Schwann cell: ensheathment, myelination, trophism and regeneration. Curr Opin Neurobiolo 1993; 5: 565-573 Ceballos D, Navarro X, Dubey N, Wendelschafer-Crabb G, Kennedy WR, Tranquillo RT. Magnetically aligned collagen gel filling a collagen nerve guide improves peripheral nerve regeneration. Exp Neurol 1999; 158: 290-300 Chamberlain LJ, Yannas IV, Hsu HP, Strichatrz GR, Spector M. Near-terminus axonal structure and function following rat sciatic nerve regeneration through a collagen-GAG matrix in a ten-millimeter gap. J Neurosci Res 2000; 60: 666-677 Chamberlain LJ, Yannas IV, Hsu HP, Strichatrz GR, Spector M. Collagen-GAG substrate enhances the quality of nerve regeneration through collagen tubes up to level of autograft. Exp Neurol 1998; 154: 315-329 Cheng Z, Teoh SH. Surface modification of ultra thin poly (epsilon-caprolactone) films using acrylic acid and collagen. Biomaterials 2004; 25: 1991-2001 Cheng C, Zochodne DW. In vivo proliferation, migration and phenotypic changes of Schwann cells in the presence of myelinated fibers. Neuroscience 2002; 115: 321- 329 Chiang HY, Chen CT, Chien HF, Hsieh ST. Skin denervation, neuropathology, and neuropathic pain in a laser-induced focal neuropathy. Neurobiol Dis 2005; 18: 40-53 Chiu DT, Janecka I, Krizek TJ, Wolff M, Lovelace RE. Autogenous vein graft as a conduit for nerve regeneration. Surgery 1982; 91:226–33 Clark WL, Trumble TE, Swiontkowski MF, et al. Nerve tension and blood flow in a rat model of immediate and delayed repairs. J Hand Surg (Am) 1992; 17:677-687 Dahlin L, Lundborg G. The use of silicone tubing in the late repair of the median and ulnar nerves in the forearm. J Hand Surg [Br.] 2001; 26:393– 94 Davis GE, Blaker SN, Engvall E, Varon S, Manthorpe M, et al. Human amnion membrane serves as a substratum for growing axons in vitro and in vivo. Science 1987; 236:1106–9 De Vries GH. Schwann cell proliferation. In: Dyck PJ, Thomas PK, Griffin JW, Low PD, Poduslo J, eds. Peripheral Neuropathy, 3rd edn. Philadelphia: W. B. Saunders; 1993: 290- 298 Dubey N, Letourneau PC, Tranquillo RT. Guided neurite elongation and Schwann cell invasion into magnetically aligned collagen in simulated peripheral nerve regeneration. Exp Neurol 1999; 158: 338-350 Evans GR, Brandt K, Widmer MS, et al. In vivo evaluation of poly (L-lactic acid) porous conduits for peripheral nerve regeneration, Biomaterials 1999; 20: 1109-1115 Evans GR. Challenges to nerve regeneration. Semin Surg Oncol 2000; 19: 312-318 Evans GR, Brandt K, Niederbichler AD, et al. Clinical long-term in vivo evaluation of poly (L-lactic acid) porous conduits for peripheral nerve regeneration. J Biomater Sci Polymer Edn 2000; 11: 869-878 Evans GR. Peripheral nerve injury: a review and approach to tissue-engineered constructs. Anat Rec 2001; 263: 396-404 Evans GR, Brandt K, Katz S, Chauvin P, Otto L, et al. Bioactive poly(L-lactic acid) conduits seeded with Schwann cells for peripheral nerve regeneration. Biomaterials 2002; 23:841– 48 Fabre T, Schappacher M, Dupuy B, Soum A, Bertrand-Barat J, Baquey C. Study of a (trimethylenecarbonate-co--caprolactone) polymer-Part 2: In vitro cytocompatibility analysis and in vivo ED1 cell response of a new nerve guide. Biomaterials 2001; 22: 2951-2958 Funakoshi H, Frisen J, Barbany G, Timmusk T, Zachrisson O, Verge VM, Persson H. Differential expression of mRNAs for neurotrophins and their receptors after axotomy of the sciatic nerve. J Cell Biol 1993; 123: 455- 465 Griffin JW, Hoffman PN. Degeneration and regeneration in the peripheral nervous system. In: Dyck PJ, ed. Peripheral neuropathy. Philadelphia, PA: W.B. Saunders; 1993: 361-375 Gue´nard V, Kleitman N, Morrissey TK, Bunge RP, Aebischer P. Syngeneic Schwann cells derived from adult nerves seeded in semipermeable guidance channels enhance peripheral nerve. J Neurosci 1992; 12: 3310– 3320 Haftek J. Stretch injury of peripheral nerve: acute effects of stretching on rabbit nerve. J Bone Joint Surg Br 1970; 52: 354-365 Hall SM. Regeneration in cellular and acellular autografts in the peripheral nervous system. Neuropathol App Neurobiol 1986;12: 27– 46 Hall SM. The biology of chronically denervated Schwann cells. Ann N Y Acad Sci 1999; 883: 215-233 Hall S. Nerve repair: a neurobiologist’s view. J Hand Surg 2001; 26: 129-136 Hadlock TA, Sundback CA, Hunter DA, Vacanti JP, Cheney ML. A new artificial nerve graft containing rolled Schwann cell monolayers. Microsurgery 2001; 21: 96-101 Heumann R, Korsching S, Bandtlow C, Thoenen H. Changes of nerve growth factors synthesis in non-neural cells in response to sciatic nerve transaction. J Cell Biol 1987; 104: 1623- 1631 Hobson MI, Green CJ, Terenghi G. VEGF enhances intraneural angiogenesis and improves nerve regeneration after axotomy. J Anat 2000; 197: 591-605 Jessen KR, Mirsky R. Schwann cells and their precursors emerge as major regulators of nerve development. Trends Neurosci 1999; 22: 402- 410 Ko MH, Chen WP, Lin-Shiau SY, Hsieh ST. Age-dependent acrylamide neurotoxicity in mice: morphology, physiology, and function. Exp Neurol 1999; 158: 37-46 Koshimune M, Takamatsu K, Nakatsuka H, Inui K, Yamano Y, Ikada Y. Creating bioabsorbable Schwann cell coated conduits through tissue engineering. Biomed Mater Eng 2003; 13: 223-229 Kweon H, Yoo MK, Park IK, Kim TH, Lee HC, Lee HS, Oh JS, Akaike T, Cho CS. A novel degradable polycaprolactone networks for tissue engineering. Biomaterials 2003;24: 801- 808 Lin WM, Hsieh ST, Huang IT, Griffin JW, Chen WP. Ultrastructural localization and regulation of protein gene product 9.5. Neuroreport 1997; 8: 2999-3004 Mackinnon SE. Surgical management of the peripheral nerve gap. Clin Plast Surg 1989; 16: 587-603 Mackinnon S, Dellon AL. Clinical nerve reconstruction with a bioabsorbable polyglycolic acid tube. Plast Reconstr Surg 1990; 85: 419-424 Mata M, Kupina N, Fink DJ. Phosphorylation-dependent epitopes are reduced at the node of Ranvier. J Neurocytol 1992; 21: 199-210 Matsumoto K, Ohnishi K, Kiyotani T, et al. Peripheral nerve regeneration across an 80-mm gap bridged by a polyglycolic acid (PGA)-collagen tube filled with laminin-coated collagen fibers: a histological and electrophysiological evaluation of regenerated nerves. Brain Res 2000; 868: 315-328 Meek MF, Coert JH, Nicolai JP. Amnion tube for nerve regeneration. Plast Reconstr Surg 2001; 107:622–23 Meek MF, Varejao AS, Geuna S. Muscle grafts and alternatives for nerve repair. J Oral Maxillofac Surg 2002; 60:1095– 96 Meyer M, Matsuoka I, Wetmore C, Olson L, Thoenen H. Enhanced synthesis of brain-derived neurotrophic factor in the lesioned peripheral nerve: different mechanisms are responsible for the regulation of BDNF and NGF mRNA. J Cell Biol 1992; 119: 45–54 Midgley RD, Woolhouse FM. Silicone rubber sheathing as an adjunct to neural anastomosis. Surg Clin N Am 1968; 48: 1149– 54 Mligiliche N, Endo K, Okamoto K, Fujimoto E, Ide C. Extracellular matrix of human amnion manufactured into tubes as conduits for peripheral nerve regeneration. J Biomed Mater Res. 2002; 63:591– 600 Mligiliche NL, Tabata Y, Kitada M, et al. Poly lactic acid-caprolactone copolymer tube with a denatured skeletal muscle segment inside as a guide for peripheral nerve regeneration: a morphological and electrophysiological evaluation of the regenerated nerves. Anat Sci Int 2003; 78: 156-161 Molander H, Olsson Y, Engkvist O, Bowald S, Eriksson I. Regeneration of peripheral nerve through a polyglactin tube. Muscle Nerve 1982; 5:54– 57 National Research Council, 1985. Guide for the Care and Use of Laboratory Animals. Washington, DC: US Department of Health and Human Services. Pitt CG, Gratzei MM, Kimmei GL, Surles J, Schindler A. Aliphatic polyesters. II. The degradation of poly(dl-lactide), poly(e-caprolactone), and their copolymers in vivo. Biomaterials 1981; 2:215- 220 Popovié M, Sketelj J, Bresjanae M. Changes of Schwann cell antigenic profile after peripheral nerve injury. Pflügers Arch-Eur J Physiol 1996; 431 (Suppl): R287-R288 Quanttrini A, Previtali S, Feltri ML, Canal N, Nemni R, Wrabetz L. Beta 4 integrin and other Schwann cell markers in axonal neuropathy. Glia 1996; 17: 294- 306 Rangappa N, Romero A, Nelson KD, Eberhart RC, Smith GM. Laminin-coated poly (L-lactide) filaments induce robust neurite growth while providing directional orientation. J Biomed Mater Res 2000; 51: 625-634 Risitano G, Cavallaro G, Merrino T, Coppolino S, Ruggeri F. Clinical results and thoughts on sensory nerve repair by autologous vein graft in emergency hand reconstruction. Chir Main 2002; 21:194– 97 Rodriguez FJ, Gomez N, Perego G, Navarro X. Highly permeable polylactide -caprolactone nerve guides enhance peripheral nerve regeneration through long gaps. Biomaterials 1999; 20: 1489-1500 Rodriguez-Tebar A, Dechant G, Barde YA. Binding of brain-derived neurotrophin factor to nerve growth factor receptor. Neuron 1990; 4: 487-492 Saika T, Senba E, Noguchi K, et al. Effects of nerve crush and transaction on mRNA levels for nerve growth factor receptor in the facial motoneurons. Molec Brain Res 1991; 9:157–160 Salzer JL, Bunge RP. Studies of Schwann cell proliferation. I. An analysis in tissue culture of proliferation during development, Wallerian degeneration and direct injury. J Cell Biol 1980; 84, 739-752 Salzer JL, Williams AK, Glaser L, Bunge RP. Studies of Schwann cell proliferation. II. Characterisation of the stimulation and specificity of the response to a neurite membrane fraction. J Cell Biol 1980; 84, 753- 766 Sondell M, Lundborg G, Kanje M. Vascular endothelial growth factor stimulates Schwann cells invasion and neovascularization of acellular nerve grafts. Brain Res 1999; 846: 219-222 Starr R, Attema B, DeVries DH, Monteiro MJ. Neurofilament phosphorylation is modulated by myelination. J Neurosci Res 1996; 44: 328-337 Strauch B. Use of nerve conduits in peripheral nerve repair. Hand Clin 2000; 16: 123-130 Sunderland IRP, Brenner MJ, Singham J, Rickman SR, Hunter DA, Mackinnon SE. Effect of tension on nerve regeneration in rat sciatic nerve transaction model. Ann Plast Surg 2004; 53: 382-387 Sung HJ, Meredith C, Johnson C, Galis ZS. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis. Biomaterals 2004; 25: 5735- 5742 Taniuchi M, Clark HB, Schweitzer JB, Johnson EM Jr. Induction of nerve growth factor receptor in Schwann cells after axotomy. Proc Natl Acad Sci U S A 1986; 83: 4094-4098 Taniuchi M, Clark HB, Schweitzer JB, Johnson EM Jr. Expression of nerve growth factor receptors by Schwann cells of axotomized peripheral nerves: ultrastructural location, suppression by axonal contact, and binding properties. J Neurosci 1988; 8: 664-681 Terada N, Bjursten LM, Papaloizis M, Lundborg G. Resorbable filament structures as a scaffold for matrix formation and axonal growth in bioartificial nerve grafts: long term observations. Restor Neurol Neurosci 1997; 11: 65-69 Tseng CY, Hu G, Ambron RT, Chiu DT. Histologic analysis of Schwann cell migration and peripheral nerve regeneration in the autogenous venous nerve conduit (AVNC). J Reconstr Microsurg 2003; 19: 331-340 Varejao ASP, Cabrita AM, Meek MF, Fornaro M, Geuna S, Giacobini-Robecchi MG. Morphology of nerve fiber regeneration along a biodegradable poly (DLLA--CL) nerve guide filled with fresh skeletal muscle. Microsurgery 2003; 23: 338-345 Varejao ASP, Cabrita AM, Geuna S, Patricio JA, Azevedo HE, Ferreira A, Meek MF. Functional assessment of sciatic nerve recovery: biodegradable poly (DLLA--CL) nerve guide filled with fresh skeletal muscle. Microsurgery 2003; 23: 346-353 Verdu E, Navarro X. Comparison of immunohistochemical and functional reinnervation. Exp Neurol 1997; 146: 187-198 Voytik-Harbin SL, BrightmanAO, Kraine MR, Waisner B, Badylak SF. Identification of extractable growth factors from small intestinal submucosa. J Cell Biochem 1997; 67:478–91 Waddell RL, Marra KG, Collins KL, Leung JT, Doctor JS. Using PC12 cells to evaluate poly (caprolactone) and collagenous microcarriers for application in nerve guide fabrication. Biotechnol Prog 2003; 19: 1767-1774 Walton RL, Brown RE, Matory WE Jr, Borah GL, Dolph JL. Autogenous vein graft repair of digital nerve defects in the finger: a retrospective clinical study. Plast Reconstr Surg 1989; 84:944–49 Williams LR, Azzam NA, Zalewski AA, Azzam RN. Regenerating axons are not required to induce the formation of a Schwann cell cable in a silicone chamber. Exp Neurol 1993; 120: 49– 59 Woodward SC, Brewer PS, Moatamed F. The intracellular degradation of poly(e-caprolactone). J Biomed Mater Res 1985; 44: 437- 444 Yoshii S, Oka M. Collagen filaments as a scaffold for nerve regeneration. J Biomed Mater Res 2001; 56: 400-405 You S, Petrov T, Chung PH, Gordon T. The expression of the low affinity nerve growth factor receptor in long-term denervated Schwann cells. Glia 1997; 20: 87-100 Zhao QZ, Drott J, Laurell T, et al. Rat sciatic nerve regeneration through a micromachined silicon chip. Biomaterials 1997; 18: 75-80 Zorick TS, Lemke G. Schwann cell deferentiation. Curr Opin Cell Biol 1996; 8: 870-876 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38237 | - |
dc.description.abstract | 我們以組織病理學及神經生理學的方法來評估不同設計的polycaprolactone (PCL) 導管: 空管(hollow) vs.多層管(laminated)何者可達到和自體神經移植 (autologous nerve graft)同樣的效果。 我們以免疫組織化學染色法 (immunohistochemistry)來檢視導管植入後, 空管及多層管中許旺細胞上的抗原變化以及神經再生的情形。 結果,在多層管中,神經生長因子受體(nerve growth factor receptor) p75與神經膠纖維酸性蛋白(glial fibrillary acidic protein) GFAP的表現明顯提升, 同時伴有較少量的磷酸化神經絲蛋白(phosphorylated neurofilamants)表現。 而空管中的結果則是相反。 此結果顯示, 空管的效率比多層管好。 為了評估在導管植入後,長期性的神經再生及功能回復, 近一步的量化評估包括坐骨神經, 朏長肌的神經肌肉接合(neuromuscular junctions)的型態度量化分析(morphometric analysis)以及坐骨神經的神經傳導實驗分別在術後三個月及六個月後實行。 手術後六個月, 空管組的神經纖維密度和自體神經移植組的結果相似, 而多層管組只達到它們的 20%。 同樣的結果也反應在神經纖維直徑及有神經支配神經肌肉接合的百分比上。 以朏長肌纖維截面積(cross-sectional muscle fiber area) 與足底肌的複合動作電位(compound muscle action potentials)的結果而言, 在三組實驗組中, 仍然是空管組具有與自體神經移植組同樣的效率且明顯優於多層管組。 這些結果顯示, PCL空管可取代自體神經移植, 且本實驗也提供了一套多方面的評估系統來檢視導管在神經截斷後促進神經再生的效應。 | zh_TW |
dc.description.abstract | We established histopathological and neurophysiological approaches to examine whether different designs of polycaprolactone-engineered nerve conduits (hollow versus laminated), could promote nerve regeneration as autologous grafts after transection of sciatic nerves. Changes of various antigen profiles in Schwann cells and regenerated axons within the hollow and the laminated conduits were examined by immunohistochemistry. Nerve growth factor receptor (p75) and glial fibrillary acidic protein (GFAP) were up-regulated in the laminated conduit with fewer expressions of phosphorylated neurofilaments. Different results with down-regulations of p75 and GFAP and abundant expressions of phosphorylated neurofilaments were observed in the hollow conduit and the autologous graft. The findings revealed that the hollow conduit had better regeneration efficacy than the laminated one. For evaluating the long-term axonal regeneration and the functional recovery after conduit grafting, further quantitative assessments included morphometric analysis at the level of sciatic nerve, neuromuscular junction (NMJ) and gastrocnemius muscle, and nerve conduction studies on sciatic nerves were performed at POM 3 and POM 6. Six months after nerve grafting, the nerve fiber density in the hollow-conduit group was similar to that in the autologous-graft group; the laminated-conduit group only achieved ~20% of these values. The consequences of these differences were reflected in nerve growth into muscular targets; this was demonstrated by combined cholinesterase histochemistry for NMJ and immunohistochemistry for nerve fibers innervating NMJ with an axonal marker, protein gene product 9.5. Hollow conduits had similar index of NMJ innervation as autologous grafts; the values were higher than those of laminated conduits. Among the three groups, there were same patterns of differences in the cross-sectional area of muscle fibers and amplitudes of compound muscle action potential. These results indicate that hollow conduits were as efficient as autologous grafts to facilitate nerve regeneration, and provide a multidisciplinary approach to quantitatively evaluate muscular reinnervation after nerve injury. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T16:28:32Z (GMT). No. of bitstreams: 1 ntu-94-D88446002-1.pdf: 4638109 bytes, checksum: 75f593416b0cd3691db7d091501224bd (MD5) Previous issue date: 2005 | en |
dc.description.tableofcontents | 目錄
中文摘要………………………………………………………………………………1 英文摘要………………………………………………………………………………2 前言……………………………………………………………………………………4 材料及方法……………………………………………………………………………9 結果 第一部份………………………………………………………………………15 第二部份………………………………………………………………………20 討論 第一部份………………………………………………………………………26 第二部份………………………………………………………………………28 參考文獻 ……………………………………………………………………………33 圖表及說明 …………………………………………………………………………41 | |
dc.language.iso | en | |
dc.title | Polycaprolactone (PCL) 導管對神經再生的效應 | zh_TW |
dc.title | Efficacies of Nerve Regeneration after Grafting a Polycaprolactone Nerve Conduit | en |
dc.type | Thesis | |
dc.date.schoolyear | 93-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 王嘉銓,簡雄飛,閔明源,陳志成 | |
dc.subject.keyword | 神經再生,神經導管,神經肌肉接合,神經傳導實驗, | zh_TW |
dc.subject.keyword | nerve regeneration,nerve conduit,nerve conduction studies, | en |
dc.relation.page | 80 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2005-07-14 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 解剖學研究所 | zh_TW |
Appears in Collections: | 解剖學暨細胞生物學科所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-94-1.pdf Restricted Access | 4.53 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.