Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38197
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳尊賢
dc.contributor.authorSen-Po Wuen
dc.contributor.author吳森博zh_TW
dc.date.accessioned2021-06-13T16:27:49Z-
dc.date.available2005-07-19
dc.date.copyright2005-07-19
dc.date.issued2005
dc.date.submitted2005-07-14
dc.identifier.citation中央氣象局。2003。氣候資料年報:第一部份-地面資料。
吳正棟。 1994。 臺灣兩山區具薄膠層土壤之理化性質、微形態特徵與化育作用。 國立台灣大學農業化學研究所碩士論文。
李心儀。1995。台灣中部人倫林道淋澱土之特性、化育與分類。國立台灣大學農業化學研究所碩士論文。
林光清、陳尊賢、張仲民。 1988。 拉拉山土壤之形態、理化性質與分類。 中國農業化學會誌 26: 503-514。
林經維。 2000。 祝山與萬歲山區土壤之特性、化育與分類。 國立台灣大學農業化學研究所碩士論文。
邱春媚。2004。嘉義祝山地區砂質與壤質淋澱土土壤之特性與化育作用。國立台灣大學農業化學研究所碩士論文。
張仲民。 1981。 普通土壤學。土壤化育與形態學。 P. 383-447. 國立編譯館。
張仲民。 1987。 普通土壤學。 p. 63-86. 國立編譯館。
許正一。1997。浸水狀況下土壤飽和狀態、氧化還原過程與氧化還原形態特徵的關係:以中壢台地為例。 國立台灣大學農業化學研究所博士論文。
陳尊賢、林光清、張仲民。 1989。 北插天山土壤之特性、化育與分類。 中國農業化學會誌 27: 145-155。
陳尊賢、蔡呈奇。 2000。 臺灣地區淋澱化土的形態特徵與分類。 土壤與環境。 3: 49-62。
楊家宏。 1993。 台灣北部地區似淋澱土之特性、化育與分類。 國立台灣大學農業化學研究所碩士論文。
劉鎮宗。1990。台灣北部塔曼山區灰壤化土之特性、化育與分類。國立台灣大學農業化學研究所碩士論文。
Alexander, E. B., C. L. Ping, and P. Krosse. 1994. Podzolization in ultramafic materials in southeast Alaska. Soil Sci. 157:46-52.
Allen, B. L., and D. S. Fanning. 1983. Composition and soil genesis. p.141-192. In L. P. Wilding, N. E. Smeck, and G. F. Hall (ed.). Pedogenesis and Soil Taxonomy, I. Concepts and interactions. Elsevier Sci. Publ. Comp., New York, U.S.A and Amsterdam, The Netherlands.
Alloway, B.J. 1995. Soil process and behavior of metals. p.11-37. In B. J. Alloway (ed.). Heavy metals in soils. 2nd ed. Blackie Academic & Professional, Glasgow, UK.
Andriesse, J. P. 1969. A study of the environment and characteristics of tropical podzols in Sarawak (East Malaysia). Geoderma 3:201-227.
Barett, L. R., and R. J. Schaetzl. 1992. An examination of podzolization near Lake Michigan using chronofunctions. Can. J. Soil Sci. 72:527-541.
Blake, G. R., and K. H. Hartge. 1986. Bulk density. p. 363-376. In A. Klute (ed.). Methods of soil analysis, Part 1. Physical and mineralogical methods. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI, USA.
Blakemore, L. C., P. L. Searle, and B. K. Daly. 1981. Laboratory methods: A. Methods for chemical analysis of Soil Sci. Rep. 10 A. Revised ed. New Zealand Soil Bureau, Lower Hutt, New Zealand.
Bloomfield, C. 1953a. A study of podzolization: Part I. The mobilization of iron and aluminum by scots pine needles. J. Soil Sci. 4:5-16.
Bloomfield, C. 1953b. A study of podzolization: Part II. The mobilization of iron and aluminum by the leaves and bark of Agathis australis (Kauri). J. Soil Sci. 4:17-23.
Bloomfield, C. 1954. A study of podzolization: Part III. The mobilization of iron and aluminum by Rimu (Dacrydium cupressinum). J. Soil Sci. 4:17-23.
Briendly, G. W. 1980. Quantitative X-ray mineral analysis of clays. p. 411-438. In G. W. Brindly, and G. Brown (ed.). Crystal Structures of Clay Minerals and their X-ray Identification. Monograph 5. Mineralogical Society, London.
Brown, G. and G. W. Briendly. 1980. X-ray diffraction procedures for clay mineral identification. p. 305-359. In G. W. Brindly, and G. Brown (ed.). Crystal Structures of Clay Minerals and their X-ray Identification. Monograph 5. Mineralogical Society, London.
Bullock, P., N. Fedoroff, A. Jongerius, G. Stoops, and T. Tursina. 1985. Handbook for soil thin section description. Waine Research Publications, Wolverhamption, U. K.
Buurman, P. 1985. Carbon/sesquioxide ratios in organic complexes and the transition albic-spodic horizon. J. Soil Sci.36:255-260.
Campbell, A. S., and U. Schwertmann. 1984. Characterization of some Andepts and andic soils in Rwanda, central Africa. Geoderma 41:193-209.
Champbell, A. S.,and U. Schwertmann. 1984. Iron oxide mineralogy of placic horizons. J. Soil Sci. 35: 569-582.
Chao, T. T. and J. Theobald. 1976. The significance of secondary iron and manganese oxides in geochemical exploration. Economic Geology 71:1560-1569.
Chen, P. Y. 1977. Tables of key lines in X-ray powder diffraction patterns of minerals in clays and associated rocks. Printed by the authority of the State of Indiana, Bloomington, Indiana.
Chen, Z. S. 1990. Spodosols of Taiwan. p. 74-87. In J.M. Kimble and R.D. Yeck (Editors). Proceedings of the Fifth International Soil Correlation Meeting (ISCOM): Characterization, Classification, and Utilization of Spodosols. Maine, Massachusetts, New Hampshire, New York, Vermont, and New Brunswick, (October 1-14, 1988).
Chen, Z. S., Z. D. Wu, and Z. Y. Hseu. 1997. Micromorphology and genesis of placic horizon in two alpine forest soils of Taiwan. p. 72-78. In S. Shoba, M. Gerasimova, and R. Miedema (editors), Proceedings of 10th International Working Meeting on Soil Micromorphology: Studies on Soil Diversity, Diagnostics, and Dynamics. July 8-13, 1996, Moscow, Russia. Published by Printing Service Centre, Wageningen, The Netherlands.
Chen, Z.S., J.C. Liu, and H.C. Chiang. 1995. Soil properties, clay mineralogy, and genesis of some alpine forest soils in Ho-Huan Mountain area of Taiwan. J. Chinese Agric. Chem. Soc. 33: 1-17.
Chiang, H. C., M. K.Wang, K. H. Hong, N. White, and J. B. Dixon. 1999. Mineralogy of B horizons in alpine forest soils of Taiwan. Soil Sci. 164: 111-122.
Chiang, H. C., Y. W. Cheng, J. H.Yang, F. W. Horng. and M. K. Wang. 1994. Iron oxides in placic horizon of alpine forest soils. J. Chinese Agric. Chem. Soc. 32: 666-674.
Childs, C. W. and D. M. Leslie. 1977. Interelement relationships in iron-manganese concretions from a catenary sequence of yellow-grey earth soils in loess. Soil Sci. 123:369-376.
Clayden, B., B. K. Daly, R. Lee, and G. Mew. 1990. The nature, occurrence, and genesis of placic horizons. p. 88-104. In J. M. Kimble (ed.). Proceedings of Fifth International Soil Correlation Meeting. USDA-SCS, Lincoln.
Cornu, S., V. Deschatrettes, S. Salvador-Blanes, B. Clozel, M. Hardy, S. Branchut, and L. Le Forestier. 2005. Trace element accumulation in Mn-Fe-oxide nodules of a planosolic horizon. Geoderma 125:11-24.
Daly, B. K. 1982. Identification of podzols and podzolized soils in New Zealand by relative absorbance of oxalate extracts of A and B horizons. Geoderma 28: 29-38.
De Coninck, F. 1980. Major mechanisms in formation of spodic horizon. Geoderma 24: 101-128.
Fanning, D. S., V. Z. Keramidas, and M. A. El-Desoky. 1989. Micas. p. 551-624. In J. B. Dixon and S. B. Weed (ed.). Minerals in soil environments. 2nd ed. SSSA, Madison, WI, USA.
FAO-Unesco. 1997. Soil map of the world. Revised legend. International Soil Reference and Information Centre, Wageningen, The Netherlands.
Gardner, W. H. 1986. Water content. p. 493-544. In A. Klute (ed.). Methods of soil analysis, Part 1. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI, USA.
Gee, G. W., and J. W. Bauder. 1986. Particle-size analysis. p. 383-411. In A. Klute (ed.). Methods of soil analysis, Part 1. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI, USA.
Giesler, R., H. Ilvesniemi, L. Nyberg, P. van Hees, M. Starr, K. Bishop, T. Kareinen, and U.S. Lundström. 2000. Distribution and mobilization of Al, Fe and Si in three podzolic soil profiles in relation to the humus layer. Geoderma 94:249-263.
Greenwood, N. N. and A. Earnshaw. 1984. Aluminium, Gallium, Indium, and Thallium. p.243-295. In N. N. Greenwood and A. Earnshaw (ed.). Chemistry of the elements. Pergamon Press Ltd., Headington Hill Hall, Oxford, England.
Gustafsson, J. P., P. Battacharya, D. C. Bain, A. R. Fraser, and W. J. McHardy. 1995. Podzolization mechanisms and the synthesis of imogolite in northern Scandinavia. Geoderma 66:167-184..
Harris, W. G., and K. A. Hollien. 1999. Changes in quantity and composition of crystalline clay across E-Bh boundaries of Alaquods. Soil Sci. 164:602-608.
Harris, W. G., and K. A. Hollien. 2000. Changes across artificial E-Bh boundaries formed under simulated fluctuating water tables. Soil Sci. Soc. Am. J. 64:967-973.
Harris, W. G., and V. W. Carlisle. 1987. Clay mineralogical relationships in Florida Haplaquods. Soil Sci. Soc. Am. J. 51:481-484.
Harris, W. G., V. W. Carlisle ,and S. L. Chesser. 1987a. Clay mineralogy as related to morphology of Florida soils with sandy epipedons. Soil Sci. Soc. Am. J. 51:1673-1677.
Harris, W. G., V. W. Carlisle, and K. C. J. Van Rees. 1987b. Pedon zonation of hydroxyl-interlayered minerals in Ultic Haplaquods. Soil Sci. Soc. Am. J. 51: 1367-1372.
Hossner, L. R. 1996. Dissolution for total elemental analysis. p.57-58. In D. L. Sparks et al. (ed.). Methods of soil analysis, Part 3. Chemical methods. ASA and SSSA, Madison, WI, USA.
Hseu, Z. Y., Z. S. Chen, and Z. D. Wu. 1999. Characterization of placic horizons in two subalpine Inceptisols. Soil Sci. Soc. Am. J. 63:941-947.
Hseu, Z.Y., C. C. Tasi, C.W. Lin, and Z. S. Chen. 2004. Transitional soil characteristics between Ultisols and Spodosols in the subalpine forest of Taiwan. Soil Sci. 169:457-467.
Hsieh, C. F., and C. F. Shen. 1994 Introduction to the flora of Taiwan, 1:geography, geology, climate, and soils. p.4-B. In C. F. Hsieh et al. (ed.). Flora of Taiwan, Volume 1. 2nd ed. Editorial Committee of the Flora of Taiwan, Taipei, Taiwan, ROC.
Hsu, P. H. 1989. Aluminum hydroxides and oxyhydroxides. p. 331-378. In J. B. Dixon and S. B. Weed (ed.). Minerals in soil environments. 2nd ed. SSSA, Madison, WI, USA.
Ismail, F. T. 1970. Bitotite weathering and clay formation in arid and humid regions, California. Soil Sci. 109:257-261.
ISSS Working Group WRB. 1998. World Reference Bases for Soil Resources. In: J. A. Deckers, O. C. Spaargaren, and F. O. Nachtergaele (ed.). 1st ed. International Society of Soil Science (ISSS), International Soil Reference and Information Centre (ISRIC), and Food and Agriculture Organization of the United Nations (FAO), Rome, Italy.
Jenny, H. 1941. Factors of soil formation. McGraw-Hill, New York.
Jersak, J., R. Amundson, and G.. Brimhall Jr. 1995. A mass balance analysis of podzolization: examples from the northern United States. Geoderma 66:15-42.
Johns, W. D., R. E. Grim, and W. F. Bradley. 1954. Mechanisms of dissolved organic carbon adsorption on soil. Soil Sci. Soc. Am. J. 53:1378-1385.
Jolicoeur, S., Ph. Ildefonse, and M. Bouchard. 2000. Kaolinite and gibbsite weathering of biotite within saprolites and soils of central Virginia. Soil Sci. Soc. Am. J. 64:1118-1129.
Kabata-Pendias, A., and H. Pendias. 2001. Elements of GroupⅠ-Ⅷ. p.99-325. In A. Kabata-Pendias and H. Pendias (ed.). Trace elements is soils and plants. 3rd ed. CRC Press, Boca Raton, FL, USA.
Lapen, D. R., and C. Wang. 1999. Placic and Ortstein horizon genesis and peatland development, southeastern Newfoundland. Soil Sci. Soc. Am. J. 63:1472-1482.
Li, S. Y., Z. S. Chen, and J. C. Liu. 1998. Subalpine loamy spodosols in Taiwan: characteristics, micromorphology, and genesis. Soil Sci. Soc. Am. J. 62: 710-716.
Li, S.Y., Z. S. Chen, and J. C. Liu. 1998. Weathering sequence of clay minerals in loamy Spodosols of Central Taiwan. J. Agric. Association China New series 183: 51-68.
Lin, C. W., Z. Y. Hseu, and Z. S. Chen. 2002. Clay mineralogy of Spodosols with high clay contents in the subalpine forests of Taiwan. Clays Clay Miner. 50:726-735.
Liu, J. C. and Z. S. Chen. 2004. Soil characteristics and clay mineralogy of two subalpine forest Spodosols with clay accumulation in Taiwan. Soil Sci. 169:66-80.
Liu, J. C., and Z. S. Chen. 1998. Soil characteristics and pedogenesis of loamy Spodosols near Wanghsiang Mountain in central Taiwan. J. Chinese Agric. Chem. Soc. 36: 151-162.
Liu, J. C., S. Y. Li, and Z. S. Chen. 1997. Microscopic characterization and podzolization of Spodosols on Central Taiwan. p. 120-128. In S. Shoba, M. Gerasimova, and R. Miedema (ed.)., Proceedings of 10th International Working Meeting on Soil Micromorphology: Studies on Soil Diversity, Diagnostics, and Dynamics. July 8-13, 1996, Moscow, Russia. Published by Printing Service Centre, Wageningen, The Netherlands.
Loganathan, P., R. G. Burau, and D. W. Fuerstenau. 1977. Influence of pH on the sorption of Co2+, Zn2+ and Ca2+ by a hydrous manganese oxide. Soil Sci. Soc. Am. J. 41:57-62.
Loveland, P. J. and P. Digby. 1984. The extraction of Fe and Al by 0.1 M pyrophosphate solutions: a comparison of some techniques. J. Soil Sci. 35: 243-250.
Lundström, U. S., 1993. The role of organic acids in the soil solution chemistry of a podzolized soil. J. Soil Sci. 48:115-120.
Lundström, U. S., N. van Breemen, and A. G.. Jongmans. 1995. Evidence for microbial decomposition of organic acids during podzolization. Eur. J. Soil Sci. 46:489-496.
Lundström, U. S., N. van Breemen, and D. Bain. 2000. The podzolization process. A review. Geoderma 94:91-107.
McDowell, W. H., T. Wood. 1984. Podzolization: soils processes control dissolved organic carbon concentrations in stream water. Soil Sci. 137:23-32.
McKeague, J. A. and H. Kodama. 1981. Imogolite in cemented horizons of some British Columbia soils. Geoderma 25:189-197.
McKeague, J. A. and J. H. Day. 1966. Dithionite- and oxalate-extractable Fe and Al as aids in differentiating various classes of soils. Can. J. Soil Sci. 46:13-22.
McKeague, J. A., Damman, A. W. H. and Heringa, P. K. 1968. Ironmanganese and other pans in some soils of Newfoundland. Can. J. Soil Sci. 48:243-253.
McKeague, J. A., F. DeConinck, and D. P. Franzmeier. 1983. Spodosols. p.217-252. In L. P. Wilding, N. E. Smeck, and G. F. Hall (ed.). Pedogenesis and Soil Taxonomy, II. The soil orders. Elsevier Sci. Publ. Comp., New York, U.S.A and Amsterdam, The Netherlands.
McKenzie, R. M. 1989. Manganese oxides and hydroxides. p. 439-465. In J. B. Dixon and S. B. Weed (ed.). Minerals in soil environments. 2nd ed. SSSA, Madison, WI, USA.
McLean, E. O. 1982. Soil pH and lime requirement. p. 199-224. In A. L. Page et al. (ed.). Methods of soil analysis, Part 2. Chemical and microbiological methods. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI, USA.
Mehra, O. P. and M. L. Jackson. 1960. Iron oxides removed from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays Clay Miner. 7:317-327.
Miller, B. J. 1983. Ultisols. p. 283-323. In L. P. Wilding, N. E. Smeck, and G. F. Hall (ed.). Pedogenesis and Soil Taxonomy, II. The soil orders. Elsevier Sci. Publ. Comp., New York, U.S.A and Amsterdam, The Netherlands.
Nelson, D. W. and L. E. Sommers. 1982. Total carbon, organic carbon, and organic matter. p. 539-579. In A. L. Page et al. (ed.). Methods of soil analysis, Part 2. Chemical and microbiological methods. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI, USA.
Ping, C. L., S. Shoji, T. Ito, T. Takahashi, and J. P Moore. 1989. Characteristics and classification of volcanic ash-derived-soils in Alaska. Soil Sci. 148:8-28.
Podlesáková, E., J. Nemecek, and R. Vácha. 2001. Mobility and bioavailability of trace elements in soils. p.21-41. In I. K. Iskandar and M.B. Kirkham (ed.). Trace elements in soils. Lewis Publisher, FL, USA.
Schaetzl, R. J. and S. A. Islard. 1996. Regional-scale relationship between climate and strength of podzolisation in the Great Lakes Region, North America. Catena 28:47-69.
Shoji, S., R. Dahlgren, and M. Nanzyo. 1993a. Genesis of volcanic ash soils. p. 37-71. In S. Shoji, M. Nanzyo, and R. Dahlgren (ed.). Volcanic ash soils. Elsevier Science Publisher, B. V., The Netherland.
Shoji, S., R. Dahlgren, and M. Nanzyo. 1993b. Morphology of volcanic ash soils. p. 7-35. In S. Shoji, M. Nanzyo, and R. Dahlgren (ed.). Volcanic ash soils. Elsevier Science Publisher, B. V., The Netherland.
Signleton, G. A. and L. M. Lavkulish. 1987 A soil chronosequence on beach sands, Vancover Island, British Colombia. Can. J. Soil Sci. 67:795-810.
Sohet, K., J. Herbauts, and W. Gruber. 1988. Changes caused by Norway spruce in an ochreous brown earth, assessed by the isiquartz method. J. Soil Sci. 39:549-561.
Soil Survey Division Staff. 1993. Soil Survey Manual. USDA. Handb. No. 18. U. S. Govt. Print. Office, Washington, D. C.
Soil Survey Staff. 1999. Soil Taxonomy: A basic system of soil classification for making and interpreting soil surveys. USDA-NRCS, Agricultural Handbook No. 436, 2nd ed., U.S. Gov. Print. Office, Washington, D. C.
Soil Survey Staff. 2003. Keys to Soil Taxonomy. 9th Edition. NRCS-USDA, Washington, D. C.
Sommer, M., D. Halm, C. Ceisinger, I. Andruschkewitsch, M. Zarei, and K. Stahr. 2001. Lateral podzolization in a sandstone catchment. Geoderma 103:231-247.
Sommer, M., D. Halm, U. Weller, M. Zarei, and K. Stahr. 2001. Lateral podzolization in a Granite landscape. Soil Sci. Soc. Am. J. 64:1434-1442.
Tan, K. H. 1980. The release of silicon, aluminium and potassium during decomposition of soil minerals by humic acid. Soil Sci. 129:5-11.
Tan, Z., W. G. Harris, and R. S. Mansell. 1999. Watertable dynamics across an Aquod-Udult transition in Florida flatwoods. Soil Sci 164:10-17.
Thomas, G. W. 1982. Exchangeable cation. p. 159-165. In A. L. Page et al. (ed.). Methods of soil analysis, Part 2. Chemical and microbiological methods. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI, USA.
Tokashiki, Y., T. Hentona, M. Shimo, and L. P. Vidhana Arachchi. 2003. Improvement of the successive selective dissolution procedure for the separation of birnessite, lithiophorite, and goethite in soil manganese nodules. Soil Sci. Soc. Am. J. 67:837-843.
Tyler, G. 2004. Vertical distribution of major, minor, and rare elements in a Haplic Podzol. Geoderma 119:227-290.
Ugolini, F. C., R. Dahlgren, S. Shoji, and T. Ito. 1988. An example of andosolization and podzolization as revealed by soil solution studies, southern Hakkoda, northeastern Japan. Soil Sci. 145: 111-125.
van Hees, P. A. W., U.S. Lundström, and R. Giesler. 2000a. Low molecular weight organic acids and their Al-complexes in soil solution—composition, distribution and seasonal variation in three podzolized soils. Geoderma 94:173-200.
van Hees, P. A. W., U.S. Lundström, M. Starr, and R. Giesler. 2000b. Factors influencing aluminium concentrations in soil solution from podzols. Geoderma 94:289-310.
Wada, K. 1989. Allophane and imogolite. p. 1051-1087. In J. B. Dixon and S. B. Weed (ed.). Minerals in soil environments. 2nd ed. SSSA, Madison, WI, USA.
Wang, C., G. J. Ross, and R. Protz. 1989. Effect of crystalline iron oxides on development and classification of podzolic soils in Western Labrador, Newfoundland. Soil Sci. Am. J. 53:870-875.
Willis, K. J., M. Braun, P. Sümegi, and A. Tóth. 1997. Does soil change cause vegetation change or vice versa? Ecology 78:740-750.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38197-
dc.description.abstract本研究選取宜蘭縣境內太平山地區10個淋澱化土壤樣體,研究其土壤形態特徵、理化特性、礦物組成及元素分佈狀態,並且探討其化育作用與分類。選取的土壤樣體可以分類為弱育土、具薄膠層土壤及極育土三類。研究地區海拔約為1900至2000公尺,母質為黏板岩,主要植生種類為紅檜(Chamaecyparis formosensis Matsum)以及台灣杉(Taiwania cryptomerioides Hay.),年降雨量約3000公釐且雨季集中於4到10月,土壤水分境況為濕潤(udic)而土壤溫度境況則屬於溫和(mesic)。土壤物理特性顯示洗入作用為研究地區薄膠層生成之前最為優勢之土壤化育作用,化學性質方面則顯示極育土中主要由有機態-鐵錯合物為主要成分,而薄膠層則以游離態之氧化鐵所組成。此外分析薄膠層鐵物質之成分則發現主要由弱結晶性的針鐵礦(goethite)、纖鐵礦(lepidocrocite)、水合氧化鐵礦(ferrihydrite)及少許的赤鐵礦(hematite)所組成,研究地區土壤中之主要黏土礦物種類為蛭石、蛭石-伊萊石混層礦物以及伊萊石,其風化序列為綠泥石及伊萊石→蛭石及蛭石-伊萊石混層礦物→水合層間蛭石(HIV)及高嶺石→水鋁氧。
研究結果顯示,具薄膠層土壤與極育土之間存在著側向洗出洗入作用(lateral eluviation-illuviation),可見地形為兩者化育差異的控制因子。而薄膠層之生成機制為:(1)強烈的洗入作用導致土壤樣體出現上粗下細之質地變化,並在該層界形成暫棲水位導致鐵物質呈現還原狀態;(2)處於略微傾斜的地理位置之土壤會因側向流動作用導致暫棲水位快速變動,提供快速且劇烈的氧化與還原交替作用;(3)待土體呈現氧化狀態時,鐵物質即在粗質地下部層界氧化、累積並且包覆粗顆粒物質形成薄膠層下部主體;(4)吸附來自表土之有機質形成上黑下紅之薄膠層。而值得注意的是較高之土壤pH值有利於薄膠層之生成,但是會抑制淋澱化作用之進行,研究地區pH值≧5.0似乎是薄膠層成因的一個重要因子,同時也可能是淋澱化作用之限制因子。研究地區土壤風化序列為新成土→弱育土→極育土或具薄膠層極育土。
土壤分類方面,研究地區具薄膠層土壤及極育土的土壤分類結果皆無法明確表現出其土壤特性,因此建議在美國分類系統(Soil Taxonomy)增加薄膠濕潤弱育土(Placudepts)大土類、薄膠浸水型簡育濕潤極育土(Placoaquic Hapludults)亞類及淋澱型簡育濕潤極育土(Spodic Hapludults)亞類,而在世界土壤分類系統(WRB system)增加薄膠型極育土(Placic Lixisols)與薄膠型變育土(Placic Cambisols)之亞類,以因應類似研究地區之土壤。
依據各類元素在土壤剖面不同深度含量之分佈狀態可將元素種類分類為:(1)累積於土表之元素:鈉、鉀、鎂、錳;(2)累積於B層之元素:鎵、鉻;及(3)與薄膠層生成有關之元素:銦。由於在薄膠層的生成過程中對於元素銦(In)具有強大的吸附能力,因此元素銦(In)的含量將可作為薄膠層的生成指標。
zh_TW
dc.description.abstractTen podzolic soil pedons were selected to study the soil morphology, characteristics, material composition, pedogenesis, elements distribution, and classification in Tai-Ping mountain region of Taiwan. The podzolic soils in the study area can be divided into three classes including Inceptisols, soils with placic horizon, and Ultisols. The selected pedons had an elevation ranging from 1900 to 2100 m and were derived from slate. The vegetation types are dominated by red cypress (Chamaecyparis formosensis Matsum) and Taiwan Chinese fir (Taiwania cryptomerioides Hay). The annual rainfall is about 3000 mm and mostly falls from April to October. The soil moisture regime is udic and the soil temperature regime is mesic. The soil physical properties showed that the illuviation process of clay particle was the dominant pedogenic process which occurred in the study area before the formation of the placic horizon. The chemical properties showed that the Ultisols appeared to be dominated by the organic-Fe types but the placic horizons appeared to be dominated by free iron oxides. On the other hand, the placic horizons are composed of poor crystalline goethite, lepidocrocite, ferrihydrite, and some hematite. All soil pedons are dominated by vermiculite, interstratified vermiculite-illite minerals, and illite. The weathering sequence of clay minerals in the study area is proposed as: illite and chlorite → vermiculite and interstratified vermiculite-illite minerals → HIV and kaolinite → gibbsite.
Lateral eluviation-illuviation occurred between the soils with placic horizon and the Ultisols. This result showed that the relief is the important controling factor of the genesis variation between soils with placic horizon and Ultisols. The genesis of placic horizon in the study area is proposed to have four stages. First stage, the perched water was formed on the surface after heavy rainfall owing to the abrupt textureal change due to strong illuviation. Second stage, the lateral flow which was induced from the slightly sloping area caused the perch water table to fluctuate rapidly thereby ehancing the fast re-oxidation alteration environment. Third stage, the soluble iron was re-oxidized, precipitated, and coated on coarse particles to form the placic horizon at the boundary between the eluvial and illuvial horizons after the perched water was drained. Fourth stage, the organic matter was adsorbed by iron oxide as shown in the characteristic morphology of the upper part of the placic horizon which is black and red in its lower part. The high pH value (>5) of the study area may be one important factor that favored the placic horizon genesis but retarded podzolization. The soil sequence in the study area is as follows: Entisols→Inceptisols→Ultisols or Ultisols with placic horizons.
The results of soil classification can not show the properties of placic horizons in the study area. I propose that a Placudepts should be included in the Great Group of Udepts. Moreover, Spodic Hapludults and Placoaquic Hapludults should be included in the subgroup of Hapludults in Soil Taxonomy. On the other hand, Placic Lixisols and Placic Cambisols should also be included in the subdivisions of Lixisols and Cambisols in the World reference base for soil resources system (WRB system).
Based on the distribution of elements in the soil profiles, the elements can be divided into three classes, such as (1)elements concentrated in the topsoil: sodium, .potassium, magnesium, and manganese; (2)elements concentrated in the B horizon: Gallium and Chromium; and (3)element concentrated in relation to the placic horizon genesis: Indium. Because Indium (In) can be strongly adsorbed in the placic horizon during the formation process, it would be a good indicator for placic horizon genesis.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T16:27:49Z (GMT). No. of bitstreams: 1
ntu-94-F88623402-1.pdf: 6339741 bytes, checksum: 47cf93cf417832e2aa7d50eb222fe297 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents中文摘要----------------------------------------------------------------------------------- Ⅰ
英文摘要----------------------------------------------------------------------------------- Ⅲ
目錄----------------------------------------------------------------------------------------- Ⅴ
圖目錄-------------------------------------------------------------------------------------- Ⅶ
表目錄-------------------------------------------------------------------------------------- Ⅸ
第一章、前言----------------------------------------------------------------------------- 1
第二章、前人研究----------------------------------------------------------------------- 3
第一節、淋澱土-------------------------------------------------------------------- 3
第二節、極育土-------------------------------------------------------------------- 14
第三節、薄膠層-------------------------------------------------------------------- 18
第四節、土壤元素分佈----------------------------------------------------------- 20
第三章、材料與方法-------------------------------------------------------------------- 30
一、研究地區環境概況與土壤樣體之選擇----------------------------- 30
二、土壤樣體之採集------------------------------------------------------ 30
三、土壤樣品之處理-------------------------------------------------------- 34
四、微形態觀察所需樣品之採集------------------------------------------ 34
五、土壤樣體分析項目----------------------------------------------------- 34
第四章、結果與討論-------------------------------------------------------------------- 47
第一節、土壤樣體形態特徵與環境因子--------------------------------------- 47
一、TF1土壤樣體------------------------------------------------------------ 47
二、TF2土壤樣體------------------------------------------------------------ 56
三、TF3土壤樣體------------------------------------------------------------ 58
四、TF4土壤樣體------------------------------------------------------------ 58
五、TF5土壤樣體------------------------------------------------------------ 61
六、TF6土壤樣體----------------------------------------------------------- 63
七、TF7土壤樣體------------------------------------------------------------ 63
八、TF8土壤樣體------------------------------------------------------------ 66
九、TF9土壤樣體----------------------------------------------------------- 68
十、TF10土壤樣體---------------------------------------------------------- 68
十一、土壤樣體形態特徵探討--------------------------------------------- 71
第二節、土壤樣體微形態特徵描述--------------------------------------------- 74
一、弱育土之土壤樣體微形態特徵--------------------------------------- 74
二、極育土之土壤樣體微形態特徵--------------------------------------- 76
三、具薄膠層土壤之土壤樣體微形態特徵------------------------------ 77
四、土壤樣體微形態特徵探討--------------------------------------------- 80
第三節、土壤樣體之理化性質--------------------------------------------------- 81
一、土壤樣體之物理性質–------------------------------------------------- 81
二、土壤樣體之化學性質--------------------------------------------------- 86
三、土壤樣體之選擇性化學性質------------------------------------------ 87
四、薄膠層成分之定性------------------------------------------------------ 94
第四節、土壤樣體黏土礦物之組成與鑑定----------------------------------- 96
一、洗出層之黏土礦物種類------------------------------------------------ 96
二、具薄膠層土壤之黏土礦物種類--------------------------------------- 100
三、薄膠層鐵氧化物成分分析--------------------------------------------- 105
四、極育土之黏土礦物種類------------------------------------------------ 107
五、黏土礦物之風化作用-------------------------------------------------- 107
第五節、土壤樣體之化育作用-------------------------------------------------- 114
一、薄膠層之生成化育作用---------------------------------------------- 114
二、極育土之生成化育作用---------------------------------------------- 115
三、土壤樣體化育序列---------------------------------------------------- 117
第六節、土壤樣體之分類-------------------------------------------------------- 118
一、依美國土壤分類系統之結果------------------------------------------ 118
二、依WRB分類系統之結果---------------------------------------------- 120
三、研究地區土壤分類之探討--------------------------------------------- 121
第七節、土壤樣體之各類元素分佈特性-------------------------------------- 124
一、0.2M HCl可萃取性元素含量累積於土表之元素----------------- 124
二、0.2M HCl可萃取性元素含量累積於B層之元素----------------- 128
三、與薄膠層生成有關之元素---------------------------------------------- 133
四、土壤樣體各類元素分佈特性之探討---------------------------------- 138
第五章、結論------------------------------------------------------------------------------ 139
第六章、參考文獻------------------------------------------------------------------------- 141
附錄------------------------------------------------------------------------------------------- 150

圖 目 錄
圖一、淋澱化作用之兩種主要的化育過程------------------------------------------ 8
圖二、淋澱土洗入層中淋澱化物質之固定------------------------------------------ 9
圖三、台灣地質圖------------------------------------------------------------------------ 32
圖四、研究地區採樣位置圖------------------------------------------------------------ 33
圖五、可交換鹽基、CEC與ODOE測定流程圖----------------------------------- 37
圖六、有機態鐵、鋁、錳之萃取與測定步驟--------------------------------------- 39
圖七、無定形態鐵、鋁、錳之萃取與測定步驟------------------------------------ 40
圖八、游離態鐵、鋁、錳之萃取與測定步驟--------------------------------------- 41
圖九、選擇性連續序列抽出鐵、鋁、錳萃取與測定步驟---------------------- 43
圖十、鉀飽和、鎂飽和與鹽酸處理黏粒之製備步驟------------------------------ 45
圖十一、TF1土壤樣體剖面形態與植生照片------------------------------------------ 55
圖十二、TF2土壤樣體剖面形態與植生照片--------------------------------------- 57
圖十三、TF3土壤樣體剖面形態與植生照片--------------------------------------- 59
圖十四、TF4土壤樣體剖面形態與植生照片--------------------------------------- 60
圖十五、TF5土壤樣體剖面形態與植生照片--------------------------------------- 62
圖十六、TF6土壤樣體剖面形態與植生照片--------------------------------------- 64
圖十七、TF7土壤樣體剖面形態與植生照片--------------------------------------- 65
圖十八、TF8土壤樣體剖面形態與植生照片--------------------------------------- 67
圖十九、TF9土壤樣體剖面形態與植生照片--------------------------------------- 69
圖二十、TF10土壤樣體剖面形態與植生照片-------------------------------------- 70
圖二十一、研究地區各類土壤樣體相對位置圖---------------------------------------- 72
圖二十二、TF9、TF2及TF5土壤樣體之微形態照片---------------------------- 75
圖二十三、TF1與TF7土壤樣體之微形態照片------------------------------------ 78
圖二十四、TF9土壤樣體E層黏粒部分之X射線繞射分析圖------------------ 97
圖二十五、TF6土壤樣體E層黏粒部分之X射線繞射分析圖------------------ 98
圖二十六、TF5土壤樣體E層黏粒部分之X射線繞射分析圖------------------ 99
圖二十七、TF6土壤樣體Bsm層黏粒部分之X射線繞射分析圖-------------- 101
圖二十八、TF6土壤樣體Bt層黏粒部分之X射線繞射分析圖----------------- 102
圖二十九、TF7土壤樣體Bsm層黏粒部分之X射線繞射分析圖-------------- 103
圖三十、TF7土壤樣體Bt2層黏粒部分之X射線繞射分析圖--------------- 104
圖三十一、各土壤樣體Bsm層鐵氧化物之X射線繞射分析圖------------------- 106
圖三十二、TF2土壤樣體Bt3層黏粒部分之X射線繞射分析圖--------------- 108
圖三十三、TF2土壤樣體C層黏粒部分之X射線繞射分析圖----------------- 109
圖三十四、元素鈉之0.2M HCl可抽出含量及全量分佈狀態-------------------- 125
圖三十五、元素鉀之0.2M HCl可抽出含量及全量分佈狀態------------------- 126
圖三十六、元素鎂之0.2M HCl可抽出含量及全量分佈狀態------------------- 127
圖三十七、元素鋰之0.2M HCl可抽出含量及全量分佈狀態------------------- 129
圖三十八、元素錳之0.2M HCl可抽出含量及全量分佈狀態------------------- 130
圖三十九、元素鐵之0.2M HCl可抽出含量及全量分佈狀態------------------- 131
圖四十、元素鋁之0.2M HCl可抽出含量及全量分佈狀態---------------------- 132
圖四十一、元素鉻之0.2M HCl可抽出含量及全量分佈狀態------------------- 134
圖四十二、元素鎵之0.2M HCl可抽出含量及全量分佈狀態------------------- 135
圖四十三、元素銦之全量分佈狀態-------------------------------------------------- 136

表 目 錄
表一、各類主要母岩中微量元素之含量--------------------------------------------- 21
表二、研究地區氣象資料--------------------------------------------------------------- 31
表三、太平山區之環境資料------------------------------------------------------------ 48
表四、太平山土壤樣體之形態特徵--------------------------------------------------- 49
表五、太平山土壤樣體之理化性質--------------------------------------------------- 82
表六、太平山土壤樣體之鐵、鋁、錳性質------------------------------------------ 88
表七、不同試劑所能溶解不同組成型態之鐵、鋁--------------------------------- 93
表八、薄膠層中鐵、鋁、錳序列抽出結果----------------------------------------------- 95
表九、太平山土壤樣體之礦物組成與含量------------------------------------------ 110
表十、太平山土壤樣體之分類--------------------------------------------------------- 119
dc.language.isozh-TW
dc.title宜蘭太平山地區淋澱化土之特性化育與分類zh_TW
dc.titleCharacteristics, Pedogenesis and Classification of Podzolic Soils in Tai-Ping Mountain of Ilanen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree博士
dc.contributor.oralexamcommittee莊作權,王明光,許正一,黃政恆,何聖賓,李達源
dc.subject.keyword薄膠層,黏聚層,極育土,弱育土,黏土礦物,土壤風化序列,側向物質移動,元素分佈,zh_TW
dc.subject.keywordplacic horizon,argillic horizon,Ultisols,Inceptisols,clay minerals,weathering sequence,lateral translocation,elements distribution,en
dc.relation.page206
dc.rights.note有償授權
dc.date.accepted2005-07-14
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  目前未授權公開取用
6.19 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved