Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38139
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor朱樺(Huah Chu)
dc.contributor.authorTse-Chung Yangen
dc.contributor.author楊策仲zh_TW
dc.date.accessioned2021-06-13T16:26:56Z-
dc.date.available2005-07-22
dc.date.copyright2005-07-22
dc.date.issued2005
dc.date.submitted2005-07-15
dc.identifier.citation[1] Y. Choie, E. Jeong, Isomorphism classes of elliptic and hyperelliptic curves over nite elds F(2g+1)n,
Finite Fields Appl., 10(2004), 583{614.
[2] Y. Choie, D. Yun, Isomorphism classes of hyperelliptic curves of genus 2 over Fq, in: L.M. Batten, J.
Seberry (Eds.), Information Security and Privacy, Lecture Notes in Computer Science 2384, Springer,
Berlin, 2002, pp. 190{202.
[3] Y. Deng, M. Liu, Isomorphism classes of hyperelliptic curves of genus 2 over nite elds with char-
acteristic 2. Preprint.
[4] Y. Deng, M. Liu, Isomorphism classes of hyperelliptic curves of genus 3 over nite elds. To appear
in Finite Fields Appl.
[5] L.H. Encinas, J.M. Masqu e, Isomorphism classes of hyperelliptic curves of genus 2 in characteristic 5,
Tech. Rep. CORR2002-07, Centre For Applied Cryptographic Research, The University of Waterloo,
Canada, 2002. Available at http://www.cacr.math.uwaterloo.ca/techreports/2002/corr2002-07.ps
[6] L.H. Encinas, A.J. Menezes, J.M. Masqu e, Isomorphism classes of genus-2 hyperelliptic curves over
nite elds, Appl. Algebra Engrg. Comm. Comput. 13(2002) 57{65.
[7] William Fulton, Algebraic curves : an introduction to algebraic geometry / notes written with the
collaboration of Richard Weiss, Benjamin, New York, 1969.
[8] Nathan Jacobson, Basic algebra II, second edition. W. H. Freeman and Company, New York, 1989.
[9] Y. Jeong,. Isomorphism classes of hyperelliptic curves of genus 3 over nite elds., Cryptology ePrint
Archive. 2003/25/.
[10] N. Koblitz, Hyperelliptic cryptosystems, J.Cryptology 1(1989) 139{150.
[11] R. Lidl, H. Niederreiter, Introduction to nite elds and their applications, Cambridge University
Press, Cambridge, 1994.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38139-
dc.description.abstract在這篇論文裡,我們得到了有限體F_q上之超橢圓曲線在genus為4且特徵值等於2的同構類個數。我們得到了以下的公式:
N=2q^7+q^4-q^3 若2整除m
N=2q^7+q^4-q^3+4q^2-4q+4 若6整除m
N=2q^7+q^4-q^3+4q^2-4q+16 若2整除m,但若6不整除m
,其中q=2^m。這個結果可以被用在超橢圓函數密碼系統(HECC)之上。
zh_TW
dc.description.abstractIn this thesis we will find the number of isomorphism classes of hyperelliptic curves of genus 4 over a finite field F_q with characteristic 2. We prove the formula of the number N of isomorphism classes as the following:
N=2q^7+q^4-q^3 if 2 divides m
N=2q^7+q^4-q^3+4q^2-4q+4 if 6 divides m
N=2q^7+q^4-q^3+4q^2-4q+16 if 2 divides m,but 6 does not divide m.
These results can be used in the classification problems and the hyperelliptic curve cryptosystems.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T16:26:56Z (GMT). No. of bitstreams: 1
ntu-94-R91221020-1.pdf: 444012 bytes, checksum: 41f3173552445b2e900478fa1a359a10 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents中文摘要
Abstract
1.Introduction...........................1
2.g=2
2.1 |(R_g)_s| for g=2..................6
2.2 Fixed points ......................10
3.g=3
3.1 |(R_g)_s| for g=3..................19
3.2 Fixed points ......................24
4.g=4
4.1 |(R_g)_s| for g=4..................35
4.2 Fixed points ......................42
Appendix ................................69
Reference................................71
dc.language.isoen
dc.subject同構類zh_TW
dc.subject超橢圓曲線zh_TW
dc.subject超橢圓曲線密碼系統zh_TW
dc.subjecthyperelliptic curve cryptosystemen
dc.subjectisomorphism classesen
dc.subjecthyperelliptic curvesen
dc.title有限體上之超橢圓曲線的同構類zh_TW
dc.titleThe Isomorphism Classes of
Hyperelliptic Curves over Finite
Fields with Characteristic 2
en
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee胡守仁,陳永秋,洪有情
dc.subject.keyword超橢圓曲線,超橢圓曲線密碼系統,同構類,zh_TW
dc.subject.keywordhyperelliptic curves,hyperelliptic curve cryptosystem,isomorphism classes,en
dc.relation.page71
dc.rights.note有償授權
dc.date.accepted2005-07-15
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
433.61 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved