Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38134
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor余政靖
dc.contributor.authorWan-Jen Hungen
dc.contributor.author洪婉仁zh_TW
dc.date.accessioned2021-06-13T16:26:51Z-
dc.date.available2005-07-21
dc.date.copyright2005-07-21
dc.date.issued2005
dc.date.submitted2005-07-15
dc.identifier.citation[1] 黃士哲,「丙酸丁酯的反應蒸餾系統」,國立台灣科技大學化學
工程研究所碩士論文 (2002).
[2] 趙桓易,「醋酸去水與異丙醇去水製程之非均勻相共沸蒸餾模擬
與控制」,國立台灣科技大學化學工程研究所碩士論文 (2002).
[3] 白雲祥,「利用酯化反應之反應性蒸餾塔回收廢水中所含醋酸:
溶劑設計」,國立台灣大學化學工程研究所碩士論文 (2003).
[4] 陳毅偉,「異相反應蒸餾系統的設計與控制」,國立台灣大學化
學工程研究所碩士論文 (2004).

[英文]
[5] Abella, L. C.; Gaspillo, P. D.; Itoh, H.; Goto, S., “Dehydration of tert-Butyl
Alcohol in Reactive Distillation”, J. Chem. Eng. Jpn., 32(6), 742 (1999).
[6] Abufares, A. A.; Douglas, P. L., “Mathematical Modeling and Simulation of an MTBE Catalytic Distillation Process Using Speedup and Aspenplus”, Chem. Eng. Res. Des., 73, Part A, 3 (1995).
[7] Agreda, V. H.; Partin, L. R.; Heise, W. H., “High Purity Methyl Acetate via
Reactive Distillation”, Chem. Eng. Prog., 86, 40 (1990).
[8] Al-Arfaj, M. A.; Luyben, W. L., “Effect of Number of Fractionating Trays on
Reactive Distillation Performance”, AIChE J., 46, 2417 (2000).
[9] Al-Arfaj, M. A.; Luyben, W. L., “Comparison of Alternative Control Structures
for an Ideal Two-Product Reactive Distillation Column”, Ind. Eng. Chem.Res.,
39, 3298 (2000).
[10] Al-Arfaj, M. A.; Luyben, W. L., “Comparative Control Study of Ideal and
Methyl Acetate Reactive Distillation”, Chem. Eng. Sci., 57, 5039 (2002a).
[11] Al-Arfaj, M. A.; Luyben, W. L., “Control of Ethylene Glycol Reactive
Distillation”, AIChE J., 48, 905 (2002b).
[12] Al-Arfaj, M. A.; Luyben, W. L., “Design and Control of an Olefin Metathesis
Reactive Distillation Column”, Chem. Eng. Sci., 57, 715 (2002c).
[13] Aspen Technology Inc. ASPEN Plus User’s Manual 11.1, Aspen Technology
Inc: Cambridge, MA (2002).
[14] Bao, J.; Gao, B.; Wu, X.; Yoshimoto, M.; Nakao, K., “Simulation of Industrial
Catalytic-Distillation Process for Production of Methyl tert-Butyl Ether by
Developing User’s Model on Aspen Plus Platform”, Chem. Eng. J., 90, 253
(2002).
[15] Barbosa, D.; Doherty, M. F., “The Simple Distillation of Homogeneous
Reactive Mixture”, Chem. Eng. Sci., 43, 541 (1988).
[16] Baur, R.; Higler, A. P.; Taylor, R.; Krishna, R., “Comparison of Equilibrium
Stage and Nonequilibrium Stage Models for Reactive Distillation”, Chem.
Eng. J., 76, 33 (2000).
[17] Beckmann, A.; Nierlich, F.; Pöpken, T.; Reusch, D.; Scala, C. V.; Tuchlenski,
A., “Industrial Experience in the Scale-Up of Reactive Distillation with
Examples from C4-Chemistry,” Chem. Eng. Sci., 57, 1525 (2002).
[18] Bianchi C.L.; Ragaini, V.; Pirola, C.; Carvoli, G., “A new method to clean
industrial water from acetic acid via esterification”, Applied Catalysis B., 40,
93 (2003).
[19] Chang, J. W.; Yu, C. C., “The Relative Gain for Non-Square Multivariable
System”, Chem. Eng. Sci., 45, 1309 (1990).
[20] Chen, F.; Huss, R. S.; Malone, M. F.; Doherty, M. F., “Simulation of Kinetic
Effects in Reactive Distillation,” Comput. Chem. Eng., 24, 2457 (2000).
[21] Cheng, Y. C.; Yu, C. C. “Optimal Region for Design and Control of Ternary
Systems”, AIChE J., 49, 682 (2003).
[22] Cheng, Y. C.; Yu, C. C. “Effects of Feed Tray Locations to the Design of
Reactive Distillation and Its Implication to Control”, Chem. Eng. Sci., 60,
4661 (2005).
[23] Chiang, S. F.; Kuo, C. L.; Yu, C. C.; Wong, D. S. H., “Design Alternatives for
the Amyl Acetate Process: Coupled Reactor/Column and Reactive
Distillation”, Ind. Eng. Chem. Res., 41, 3233 (2002).
[24] Chien, I.L.; Zeng, K.L.; Chao, H.Y.; Liu, J.H. “Design and control of acetic
acid dehydration system via heterogeneous azeotropic distillation”, Chem.
Eng. Sci., 59, 4547 (2004).
[25] Chung, Y.; Jeong, H. K.; Song, H. K.; Park, W. H., “Modeling and Simulation
of the Chemical Reaction Heat Pump System Adopting the Reactive
Distillation Process”, Comput. Chem. Eng., 21, Suppl., S1007 (1997).
[26] Ciric, A. R.; Maio, P., “Steady State Multiplicities in an Ethylene Glycol
Reactive Distillation Column,” Ind. Eng. Chem. Res., 33, 2738 (1994).
[27] Cloete, F. L. D.; Marais, A. P., “Recovery of Very Dilute Acetic Acid Using Ion
Exchange”, Ind. Eng. Chem. Res., 34, 2464 (1995).
[28] Chemical Engineering, 112, 78, (2005).
[29] Demiral, H.; Yildirim., M.E. “Recovery of acetic acid from waste streams by
extractive distillation”, Water Science and Technology, 47, 183-188 (2003).
[30] Doherty, M. F.; Buzad, G., “Reactive Distillation by Design,” Trans. IChemE, 70, Part A, September (1992).
[31] Doherty, M. F.; Caldarola, G. A., “Design and Synthesis of Homogeneous
Azeotropic Distillations. 3. The Sequencing of Columns for Azeotropic and
extractive Distillations”, Ind. Eng. Chem. Fundam., 24, 474 (1985).
[32] Doherty, M. F.; Malone, M. F. Conceptual Design of Distillation Systems,
McGraw-Hill: New York (2001).
[33] Douglas, J. M. Conceptual Process Design, McGraw-Hill: New York (1988).
[34] Eva, S.; Skogestad, S., “Control Strategies for Reactive Batch Distillation”, J.
Proc. Cont., 4, 205 (1994).
[35] Gmehling, J.; Onken, U., “Vapor-Liquid Equilibrium Data Collection,
Chemistry Data Series”, DECHEMA: Frankfurt, Germany (1977).
[36] Güttinger, T. E.; Morari, M., “Predicting Multiple Steady State in Equilibrium
Reactive Distillation. 1. Analysis of Nonhybrid Systems”, Ind. Eng. Chem.
Res., 38, 1633 (1999a).
[37] Güttinger, T. E.; Morari, M., “Predicting Multiple Steady State in Equilibrium
Reactive Distillation. 2. Analysis of Hybrid Systems”, Ind. Eng. Chem. Res.,
38, 1649 (1999b).
[38] Han, M.; Lin, H.; Wang, L.; Jin, Y., “Characteristics of the Reactive
Distillation Column with a Novel Internal”, Chem. Eng. Sci., 57, 1551 (2002).
[39] Hanika, J.; Kolena, J.; Smejkal, Q., “Butyl Acetate via Reactive Distillation
Modeling and Experiment”, Chem. Eng. Sci., 54, 5205 (1999).
[40] Hauan, S.; Hertzberg, T.; Lien, K. M., “Why Methyl tert-Butyl Ether
Production by Reactive Distillation May Yield Multiple Solutions”, Ind. Eng.
Chem. Res., 34, 987 (1995).
[41] Hauan, S.; Hertzberg, T.; Lien, K. M., “Why Methyl tert-Butyl Ether
Production by Reactive Distillation May Yield Multiple Solutions”, Ind. Eng.
Chem. Res., 34, 987 (1995).
[42] Hayden, J. G.; O’Connell, J. P., “A Generalied Method for Predicting Second Virial Coefficients”, Ind. Eng. Chem. Proc. Des., 14, 209 (1975).
[43] Hernjak, N.; Doyle, F. J. III, “Correlation of Process Nonlinerity with Closed-Loop Disturbance Rejection”, Ind. Eng. Chem. Res., 42, 4611 (2003).
[44] Higler, A.; Taylor, R.; Krishna, R., “Modeling of a Reactive Separation Process
Using a Nonequilibrium Stage Model”, Comput. Chem. Eng., 22, Suppl., S111
(1998).
[45] Horsley, L. H., Azeotropic data - III, Advances in Chemistry Series No. 116,
American Chemical Society, Washington, D.C. (1973).
[46] Huang, S. G.; Kuo, C. L.; Hung, S. B.; Chen, Y. W.; Yu, C. C., “Temperature
Control of Heterogeneous Reactive Distillation: Butyl Propionate and Butyl
Acetate Esterification”, AIChE J., 50, 2203 (2004).
[47] Huang, S. G.; Yu, C. C., “Sensitivity of Thermodynamic Parameter to the
Design of Heterogeneous Reactive Distillation: Amyl Acetate Esterification”,
J. Chin. Inst. Chem. Eng., 34, 345 (2003).
[48] Jacob, R.; Krishna, R., “Multiple Solutions in Reactive Distillation for Methyl
tert-Butyl Ether Synthesis”, Ind. Eng. Chem. Res., 32, 1706 (1993).
[49] Jiménez, L.; Wanhschafft, O. M.; Julka, V., “Analysis of Residue Curve Maps
of Reactive and Extractive Distillation Units”, Comput. Chem. Eng., 25, 635
(2001).
[50] Kim, K. J.; Diwekar, U. M., “Integrated Solvent Selection and Recycling for
Continuous Process”, Ind. Eng. Chem. Res., 41, 4479 (2002).
[51] Krishna, R., “Reactive Separations: More Ways to Skin a Cat”, Chem. Eng.
Sci., 57, 1491 (2002).
[52] Kumar, A.; Daoutidis, P., “Feedback Control of Nonlinear
Differential-Algebraic-Equation Systems”, AIChE J., 41, 619 (1995).
[53] Kumar, A.; Daoutidis, P., “Modeling, Analysis and Control of Ethylene Glycol
Reactive Distillation Column,” AIChE J., 45, 51 (1999).
[54] Lee, L. S.; Hauan, S.; Westerberg, A. W., “Graphical Methods Reaction
Distribution in a Reactive Distillation Column”, AIChE J., 46, 1218 (2000).
[55] Lee, M. J.; Wu, H. T.; Kang, C. H.; Lin, H. M., “Kinetic Behavior of Amyl
Acetate Synthesis Catalyzed by Acidic Cation Exchang Resin”, J. Chin. Inst.
Chem. Eng., 30, 2 (1999).
[56] Lee, M. J.; Chen, S. L.; Kang, C. H.; Lin, H. M., “Simultaneous Chemical and
Phase Equilibria for Mixture of Acetic Acid, Amyl Alcohol, Amyl Acetate, and
Water”, Ind. Eng. Chem. Res., 39, 4383 (2000).
[57] Lee, M. J.; Chiu, J. Y.; Lin, H. M., “Kinetics of Catalytic Esterification of
Propionic Acid and n-Butanol over Amberlyst 35”, Ind. Eng. Chem. Res., 41,
2882 (2002).
[58] Leyes, C. E.; Othmer, D. F., “Esterification of Butanol and Acetic Acid”, Ind.
Eng. Chem., 37, 968 (1945).
[59] Luyben, W. L. “Practical Distillation Control,” Van Nostrand Reinhold : New
York (1992).
[60] Luyben, W. L., “Economic and Dynamic Impact of the Use of Excess Reactant
in Reactive Distillation System”, Ind. Eng. Chem. Res., 39, 2935 (2000).
[61] Mahajani, S. M.; Kolah, A.K., “Some Design Aspects of Reactive Distillation
Columns (RDC)”, Ind. Eng. Chem. Res., 35, 4587 (1996).
[62] Malone, M. F.; Doherty, M. F., “Reactive Distillation”, Ind. Eng. Chem. Res.,
39, 3953 (2000).
[63] Menold, P. H.; Allgöwer, F.; Pearson, R.K., “Nonlinear Structure
Identification of Chemical Processes”, Comput. Chem. Eng., 21, S137
(1997).
[64] Neumann, R.; Sasson, Y., “Recovery of Dilute Acetic Acid by Esterification in
a Packed Chemorectification Column”, Ind. Eng. Chem. Process Des. Dev.,
23, 654 (1984).
[65] Nijhuis, S. A.; Kerkhof, F. P. J. M.; Mak, A. N. S., “Multiple Steady States
during Reactive Distillation of Methyl tert-Butyl Ether”, Ind. Eng. Chem. Res.,
32, 2767 (1993).
[66] Noeres, C.; Kenig, E. Y.; Górak, A., “Modeling of Reactive Separation
Processes: Reactive Absorption and Reactive Distillation”, Chem. Eng. Proc.,
42, 157 (2003).
[67] Okasinski, M.J.; Doherty, M.F., “Design Method for Kinetically Controlled,
staged reactive distillation columns”, Ind. Eng. Chem. Res., 37, 2821 (1998).
[68] Okur, H.; Bayramoglu, M., “The Effect of the Liquid-Phase Activity Model on
the Simulation of Ethyl Acetate Production by Reactive Distillation,” Ind.
Eng. Chem. Res., 40, 3639 (2001).
[69] Perry, R. H.; Green, D. W.; Maloney, J. O., Perry’s Chemical Engineers’
Handbook, 6th Ed., McGraw-Hill: Singapore (1984).
[70] Pöpken, T.; Götze, L.; Gmehling, J., “Reaction Kinetics and Chemical
Equilibrium of Homogeneously and Heterogeneously Catalyzed Acetic Acid
Esterification with Methanol and Methyl Acetate Hydrolysis”, Ind. Eng.
Chem. Res., 39, 2601 (2000).
[71] Saha, B.; Chopade, S. P.; Mahajani, S. M., “Recovery of Dilute Acetic Acid
through Esterification in a Reactive Distillation Column”, Catalysis Today, 60,
147 (2000).
[72] Schweickhardt, T., and F. Allgower, “Quantitative Nonlinearity Assessment:
An Introduction to Nonlinearity Measure”, in Integration of Process Design
and Control, Seferlis, P. and Georgiadis, M. C. Eds., Elsevier: Amsterdam
(2004).
[73] Shinsky, F. G., “Distillation Control”, 2nd Ed., McGraw-Hill: New York
(1984).
[74] Smejkal, Q.; Hanika, J.; Kolena, J., “2-Methylpropylacetate Synthesis in a
System of Equilibrium Reactor and Reactive Distillation Column”, Chem.
Eng. Sci., 56, 365 (2001).
[75] Smejkal, Q.; Šoóš, M., “Comparison of Computer Simulation of Reactive
Distillation Using Aspen Plus and Hysys Software”, Chem. Eng. Proc., 41,
413 (2002).
[76] Sneesby, M. G.; Tade, M. O.; Datta, R.; Smith, T. N., “ETBE Synthesis via
Reactive Distillation. 1. Steady-State Simulation and Design Aspects”, Ind.
Eng. Chem. Res., 36, 1855 (1997a).
[77] Sneesby, M. G.; Tade, M. O.; Datta, R.; Smith, T. N., “ETBE Synthesis via
Reactive Distillation. 2. Dynamic Simulation and Control Aspects”, Ind. Eng.
Chem. Res., 36, 1870 (1997b).
[78] Steyer, F.; Qi, Z.; Sundmacher, K., “Synthesis of Cylohexanol by Three-Phase
Reactive Distillation: Influence of Kinetics on Phase Equilibria”, Chem. Eng.
Sci., 57, 1511 (2002).
[79] Sundmacher, K., and A. Kienle, Reactive Distillation: Status and Future
Directions, Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany
(2003).
[80] Tang, Y. T.; Hung, S. B.; Chen, Y. W.; Huang, H. P.; Lee, M. J.; Yu, C. C.,
“Design of Reactive Distillations for Acetic Acid Esterification with Different
Alcohols”, AIChE J., 51, 1683 (2005).
[81] Taylor, R.; Krishna, R., “Review: Modelling Reactive Distillation”, Chem.
Eng. Sci., 55, 5183 (2000).
[82] Tuchlenski, A.; Beckmann, A.; Reusch, D.; Düssel, R.; Weidlich, U.;
Janowsky, R., “Reactive Distillation – Industrial Applications, Process Design
and Scale-Up”, Chem. Eng. Sci., 56, 387 (2001).
[83] Venkataraman, S.; Chan, W. K.; Boston, J. F., “Reactive Distillation Using
ASPEN PLUS”, Chem. Eng. Prog., Aug., 45, (1990).
[84] Vora, N.; Daoutidis, P., “Dynamic and Control of Ethyl Acetate Reactive
Distillation”, Ind. Eng. Chem. Res., 40, 833 (2001).
[85] Wang, S. J.; Wong, D. S. H.; Lee, E. K., “Effect of Interaction Multiplicity on
Control System Design for a MTBE Reactive Distillation Column”, J. Proc.
Cont., 13, 503 (2003).
[86] Wu, K. L.; Yu, C. C., “Reactor Separator Processes with Recycle : 1.
Candidate Control Structure for Operability”, Comput. Chem. Eng., 20, 1291
(1996).
[87] Xu, Z. P.; Afacan, A.; Chuang, K. T., “Removal of Acetic Acid from Water by
Catalytic Distilation. Part 1: Experimental Studies”, Can. J. Chem. Eng., 77,
676 (1999a).
[88] Xu, Z. P.; Afacan, A.; Chuang, K. T., “Removal of Acetic Acid from Water by
Catalytic Distilation. Part 2: Modeling and Simulation Studies”, Can. J. Chem.
Eng., 77, 682 (1999b).
[89] Xu, Z. P.; Chuang, K. T., “Kinetics of Acetic Acid Esterification over Ion
Exchange Catalysts”, Can. J. Chem. Eng., 74, 493 (1996).
[90] Yi, C. K.; Luyben, W. L., “Design and Control of Coupled Reactor/column
System-Part 1. A Binary Coupled Reactor/Rectifer System”, Comput. Chem.
Eng., 21, 25 (1997).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38134-
dc.description.abstract本研究的目的主要是探討稀釋(Dilute)醋酸水溶液的回收再利用問題,而我們所研究的稀釋醋酸濃度範圍大約是介於30~100 wt%之間。主要的研究方式是經由在反應性蒸餾塔中的酯化反應將回收後的廢酸轉變為具有利用價值的酯類產品,藉以取代單純利用蒸餾技術將廢酸中的醋酸與水予以分離。基本上,此一類型的研究主要會牽涉到以下三個問題:(1)針對酯化反應而言,我們需考量選擇何種醇類反應物來回收廢酸較具經濟效益(選用的醇類物質範圍為甲醇~戊醇):一溶劑選擇的問題;(2)採用單一的反應性蒸餾塔處理濃度較為稀釋的廢酸,是否可以維持採用反應性蒸餾技術所帶來的經濟效益(判斷標準主要是根據年總成本)?在此,我們可藉由與另一處理廢酸回收問題製程(例如:利用共沸蒸餾系統處理廢酸取得高純度的醋酸,然後利用反應性蒸餾系統取得高純度的酯類產品)的比較得知其結果;(3)經由最適化設計地反應性蒸餾系統對於廢酸進料流率及進料濃度的改變是否具有可操作性?
針對溶劑選擇的問題,我們研究的主題主要是對反應性蒸餾塔結構進行定性上的分析(均相及異相反應性蒸餾系統比較),以及藉由定量的年總成本(TAC)分析結果,依照廢酸中所含水組成比例的不同,決定廢酸的入料位置。結果證明當廢酸中所含醋酸的比例愈來愈稀釋時,廢酸的入料位置扮演了決定性的角色,本篇主要由第一年之結果,甲醇和戊醇則是對於廢酸回收製程較具經濟效益的反應溶劑。接下來我們針對反應性蒸餾製程提出一系統化的設計方法,經由年總成本的比較結果得知採用單一反應性蒸餾塔處理廢酸回收的製程,遠較利用共沸蒸餾系統對廢酸做提純(Purification),然後利用反應性蒸餾系統取得高純度酯類產品的製程具有經濟效益。
最後,我們將經由系統化的設計步驟所設計出之最適化的反應性蒸餾系統套用一控制架構進行動態模擬。模擬結果證明在合理地濃度範圍及流量擾動之下,我們能夠獲得較佳的控制結果。
zh_TW
dc.description.provenanceMade available in DSpace on 2021-06-13T16:26:51Z (GMT). No. of bitstreams: 1
ntu-94-R92524050-1.pdf: 3356590 bytes, checksum: 4e0c47ee86d772ed1469a5c4205acd98 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents致 謝 I
摘 要…………………………………………………………………………….....II
ABSTRACT IIII
目 錄 IV
圖索引 VI
表索引 VIII
1 緒論(INTRODUCTION) 1
1.1 前言 1
1.2 文獻回顧 3
1.3 研究動機與目的 5
1.4 組織章節 6
2 化學路徑(PROCESS CHEMISTRIES) 9
2.1 程序選擇 9
2.2 乙酸甲酯製程 10
2.2.1 液相使用之熱力學模式 11
2.2.2 氣相使用之熱力學模式 12
2.2.3 兩相區分布之探討 13
2.2.4 乙酸甲酯反應系統之蒸餾曲線圖分析 14
2.2.5 乙酸甲酯反應系統之動力學分析 17
2.3 乙酸戊酯系統製程 19
2.3.1 液相使用之熱力學模式 20
2.3.2 氣相使用之熱力學模式 20
2.3.3 兩相區分布之探討 21
2.3.4 乙酸戊酯反應系統之蒸餘曲線圖分析 22
2.3.5 乙酸戊酯反應系統動力學模式分析 27
3 穩態設計(STEADY STATE DESIGN) 30
3.1 程序設計選擇性 (DESIGN ALTERNATIVES) 30
3.2 穩態設計之最適化步驟 31
3.3 乙酸甲酯製程 33
3.3.1 無前處理過程 (WITHOUT PRETREATMENT) 之最適化設計 33
3.3.2 前處理過程 (WITH PRETREATMENT) 之最適化設計 35
3.4 乙酸戊酯製程 37
3.4.1 無前處理過程 (WITHOUT PRETREATMENT) 之最適化設計 37
3.4.1.1 100 WT% 濃度醋酸入料之穩態設計結果 38
3.4.1.2 75 WT% 濃度醋酸入料之穩態設計結果 40
3.4.1.3 50 WT% 濃度醋酸入料之穩態設計結果 42
3.4.1.4 30 WT% 濃度醋酸入料之穩態設計結果 44
3.4.2 乙酸戊酯製程無前處理過程之最適化設計探討 46
3.4.3 前處理過程 (WITH PRETREATMENT) 之最適化設計 51
3.4.4 乙酸戊酯製程之無前處理過程與前處理過程之討論與比較 56
4 動態控制模擬(DYNAMICS AND CONTROL) 57
4.1 程序特性 57
4.2 控制系統設計 62
4.3 乙酸戊酯製程之動態控制模擬 64
4.3.1 雙溫度控制 64
4.3.1.1 溫度靈敏度測試分析 65
4.3.1.2 非方形相對增益 67
4.3.1.3 控制器參數協調方法 68
4.3.1.4 雙溫度控制動態模擬結果 70
4.3.2 一溫度及一組成控制 78
4.3.2.1 一溫度及一組成控制動態模擬結果 79
4.3.3 非線性分析結果與討論 83
5 結論 85
參 考 文 獻 87
附錄 A 95
dc.language.isozh-TW
dc.subject反應蒸餾zh_TW
dc.subjectreactive distillationen
dc.title利用反應性蒸餾系統進行稀醋酸之酯化反應:化學路徑、程序設計與控制zh_TW
dc.titleProcess Chemistries, Design Alternatives and Control for Recovery of Dilute Acetic Acid through Esterification in Reactive Distillationen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃孝平,陳誠亮,錢義隆,周宜雄
dc.subject.keyword反應蒸餾,zh_TW
dc.subject.keywordreactive distillation,en
dc.relation.page97
dc.rights.note有償授權
dc.date.accepted2005-07-15
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
3.28 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved