請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38128完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 傅立成(Li-Chen Fu) | |
| dc.contributor.author | Yu-Shan Cheng | en |
| dc.contributor.author | 鄭宇珊 | zh_TW |
| dc.date.accessioned | 2021-06-13T16:26:46Z | - |
| dc.date.available | 2006-07-30 | |
| dc.date.copyright | 2005-07-30 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-15 | |
| dc.identifier.citation | [1] M. S. Lew, N. Sube, and T. S. Huang, “Improving Visual Matching,” IEEE Conf. on Computer Vision and Pattern Recognition, Vol. 2, pp. 58-65, 2000.
[2] J. P. Lewis, “Fast Normalized Cross-Correlation,” Vision Interface, pp. 120-123, 1995. [3] Y. S. Chen, Y. P. Hung, and C. S. Fuh, “A Fast Block Matching Algorithm Based on the Winner-Update Strategy,” Proc. of the 4th Asian Conf. on Computer Vision, Vol. 2, pp. 977-982, Jan. 2000. [4] A. M. Peacock, S. Matsunaga, D. Renshaw, J. Hannah, and A. Murray, “Reference Block Updating When Tracking with Block Matching Algorithm,” Electronics Letters 17th, Vol. 36, No.34, pp. 309-310, Feb. 2000. [5] C. Haworth, A. M. Peacock, and D. Renshaw, “Performance of Reference Block Updating Techniques When Tracking with the Block Matching Algorithm,” Proc. of Int. Conf. on Image Processing, Vol. 1, pp. 365-368, 2001. [6] S. Birchfield, “An Elliptical Head Tracker,” 31st Asilomar Conf. on Signals, Systems, and Computers, Nov. 1997. [7] S. Birchfield, “Elliptical Head Tracking Using Intensity Gradiants and Color Histograms,” IEEE Conf. on Computer Vision and Pattern Recognition, Santa Barbara, California, pp. 232-237, July 1998. [8] S. B. Colegrove and S. J. Davey, “The Probabilistic Data Association Filter with Multiple Nonuniform Clutter Regions,” IEEE Int. Radar Conf., pp. 65-70, 2000. [9] C. M. Huang, S. C. Wang, L. C. Fu, P. Y. Chen, and Y. S. Cheng, “A Robust Visual Tracking of an Arbitrary-Shaped Object by a New Active Contour Method for a Virtual Reality Application,” IEEE Int. Conf. on Networking, Sensing and Control, Vol. 1, pp. 64-69, March 2004. [10] W. Kim and J. J. Lee, “Visual Tracking Using Snake Based on Target's Contour Information,” IEEE Int. Symposium on Industrial Electronics, Vol. 1, pp. 176-180, June 2001. [11] Arthur Gelb, Applied Optimal Estimation, the M.I.T. Press, 1974. [12] R. Deriche and O. Faugeras, “Tracking Line Segments,” European Conf. on Computer Vision, pp. 259-268, Springer-Verlag, 1990. [13] T. J. Broida, S. Chandrashekhar, and R. Chellappa, “Recursive 3D Motion Estimation from a Monocular Image Sequence,” IEEE Trans. on Aerospace and Electronic Systems, Vol. 26, No. 4, pp. 639-656, 1990. [14] I. J. Cox, “A Review of Statistical Data Association Techniques for Motion Correspondence,” Int. Journal of Computer Vision, Vol. 10, pp. 53-66, 1993. [15] Y. Bar-Shalom and E. Tse, “Tracking in a Cluttered Environment with Probabilistic Data Association,” Automatica, Vol. 11, pp. 451-460, 1975. [16] Y. Bar-Shalom and T. E. Fortmann, Tracking and Data Association, Academic Press, 1988. [17] T. E. Fortmann, Y. Bar-Shalom, and M. Scheffe, “Sonar Tracking of Multiple Targets Using Joint Probabilistic Data Association,” IEEE Journal of Oceanic Engineering, Vol. 8, No. 3, pp. 173-184, July 1983. [18] B. Zhou and N.K. Bose, “Multitarget Tracking in Clutter: Fast Algorithms for Data Association,” IEEE Trans. on Aerospace and Electronic Systems, Vol. 29, No. 2, pp. 352-363, April 1993. [19] D. B. Reid, “An Algorithm for Tracking Multiple Targets,” IEEE Trans. on Automatic Control, Vol. 24, No. 6, pp. 843-854, 1979. [20] M. Isard and A. Blake, “CONDENSATION— Conditional Density Propagation for Visual Tracking,” Int. Journal of Computer Vision, pp. 1-36, 1998. [21] M. Isard and A. Blake, “A Mixed-State CONDENSATION Tracker with Automatic Model-Switching,” Proc. of 6th Int. Conf. on Computer Vision, pp. 107-112, 1998. [22] M. Isard and A. Blake, Active Contours: The Application of Techniques from Graphics, Vision, Control Theory and Statistics to Visual Tracking of Shapes in Motion, Spring Inc., 1998. [23] M. Bray, E. Koller-Meier, and L. Van Gool, “Smart Particle Filtering for 3D Hand Tracking,” IEEE Int. Conf. on Automatic Face and Gesture Recognition, pp. 675-680, 2004. [24] C. Chang and R. Ansari, “Kernel Particle Filter for Visual Tracking,” IEEE Signal Processing Letters, Vol. 12, No. 3, pp. 242-245, March 2005. [25] A. Utsumi and J. Ohya, “Multiple-Camera-Based Human Tracking Using Non-Synchronous Observations,” Proc. of Asian Conf. on Computer Vision, pp. 1034-1039, Jan. 2000. [26] T. H. Chang and S. Gong, “Tracking Multiple People with a Multi-Camera System,” Proc. of IEEE Workshop Multi-Object Tracking, with ICCV ’01, July 2001. [27] S. L. Dockstader and A. M. Tekalp, “Multiple Camera Tracking of Interacting and Occluded Human Motion,” Proc. of the IEEE, Vol. 89, No. 10, pp. 1441-1455, Oct. 2001. [28] S. Khan and M. Shah, “Consistent Labeling of Tracked Objects in Multiple Cameras with Overlapping Fields of View”, IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 25, No. 10, pp. 1355 -1360, Oct. 2003. [29] David Liu, Real-Time Visual Tracking in Cluttered Environment with a Pan-Tilt Camera, Graduate Institute of Electrical Engineering, National Taiwan University, Master’s Thesis, 2001. [30] T. K. Kuo, A Robust Visual Servo Based Headtracker with Auto-Zooming in Cluttered Environment, Graduate Institute of Electrical Engineering, National Taiwan University, Master’s Thesis, 2002. [31] R. M. Haralick and L. G. Shapiro, Computer and Robot Vision, Vol. 1, Addison-Wesley Inc., 1992. [32] A. Lipton, H. Fujiyoshi, and R. Patil, “Moving Target Classification and Tracking from Real-Time Video,” Proc. of the DARPA Image Understanding Workshop, pp. 8-14, 1998. [33] K. S. Fu, R. C. Gonzalez, and C. S. G. Lee, Robotics: Control, Sensing, Vision, and Intelligence, McGraw-Hill: New York, 1987. [34] M. M. Richard, Z. Li, and S. S. Sastry, A Mathematical Introduction to Robotic Manipulation, CRC Press Inc, 1994. [35] S. Yalamanchili, W. N. Martin, and J. K. Aggarwal, “Extraction of moving object description via differencing,” CGIP, Vol. 18, pp. 188-201, 1982. [36] D. Murray, and A. Basu, “Motion Tracking with an Active Camera,” IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 16, No.5, pp. 449-459, May 1994. [37] K. W. Lee, S. W. Ryu, S. J. J. Lee, and K. T. Park, “Motion Based Object Tracking with Mobile Camera,” Electronics letters 5th, Vol. 34, No.3, Feb. 1998. [38] J. W. Lee, M. S. Kim, and I. S. Kweon, “A Kalman Filter Based Visual Tracking Algorithm for an Object Moving in 3D,” IEEE Int. Conf. on Intelligent Robots and Systems 95., Vol. 1, pp. 342-347, 1995. [39] K. B. Sarachik, “The Effect of Gaussian Error in Object Recognition,” IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 19, No. 4, pp. 289-301, 1997. [40] M. Boshra and B. Bhanu, “Predicting Performance of Object Recognition,” IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 22, No. 9, pp. 956-969, 2000. [41] D. Liu and L. C. Fu, “Target Tracking in an Environment of Nearly Stationary and Biased Clutter,” IEEE Int. Conf. on Intelligent Robots and Systems, Vol. 3, pp. 1358-1363, 2001. [42] J. Chen, H. Leung, T. Lo, J. Litva, and M. Blanchette, “A Modified Probabilistic Data Association in a Real Clutter Environment,” IEEE Trans. on Aerospace and Electronic Systems, Vol. 32, No. 1, pp. 300-313, 1996. [43] T. W. Ridler and S. Calvard, “Picture Thresholding using an Iterative Selection Method,” IEEE Trans. on Systems, Man and Cybernetics, Vol. 8, No. 8, pp. 630-632, 1978. [44] H. J. Trussell, “Comments on Picture Thresholding Using an Iterative Selection Method,” IEEE Trans. on Systems, Man and Cybernetics, Vol. smc-9, No. 5, pp. 311, 1979. [45] A. Magid, S. R. Rotman, and A. M. Weiss, “Comment on Picture Thresholding using an Iterative Selection Method,” IEEE Trans. on Systems, Man and Cybernetics, Vol. 20, No. 5, Sep./Oct. 1990. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38128 | - |
| dc.description.abstract | 本論文發展於多相機之複雜環境中,多人物追蹤及身份辨識都在此論文中提出。本篇論文主要分成二部分:第一部分著力於單個相機的環境下,如何成功追蹤多個人物,而第二部分是在單相機系統的基礎上,於多相機之環境中對多個人物做追蹤。
在單相機環境下之多個人物追蹤系統中,首先我們利用運動偵測器及橢圓頭部偵測方式去偵測有無人物進入監控範圍中,於偵測人物後,利用模板比對以及橢圓演算法持續追蹤此人物。此外,為避免在多個人物交錯時因影像相似度過高而導致追蹤失敗的情況發生,我們引進軌跡預測的概念,在此基礎之上,提出了聯合影像機率資料結合濾波器。 在多相機環境下之多個人物追蹤系統中,如何在多個不同的影像平面中,判斷是否為同一個人物,進而對此人物作大範圍持續追蹤是最重要的部分,當有新人物進入其中一個相機的監控畫面中,我們利用影像上的特徵(影像上的位置及衣服的顏色)判斷是否為一個新人物或在其他相機出現過的人物,緊接著利用第一部分的追蹤演算法對人物做後續追蹤。 最後,透過實驗來驗證單相機之多目標物影像追蹤系統及多相機之多目標物影像追蹤系統之可靠性和可行性。 | zh_TW |
| dc.description.abstract | This thesis aims to track multiple people in a multi-camera system for cluttered environment which can be divided into two important parts: one is tracking multiple people in a single camera environment, and the other is tracking multiple people in a multi-camera environment.
In a single camera environment, we apply the motion detector and the ellipse algorithm to detect a new person intruding the surveillance area. Then, we utilize the template matching and the ellipse matching to track the person. To prevent tracking failure tracking when people cross over each other, we include the hereby proposed Joint Visual Probabilistic Data Association filter (JVPDA filter) to track multiple people successfully. In a multi-camera environment, the major problem is to determine whether the new person intruding into some surveillance area of a camera is an identified person by some other camera or not. To resolve the aforementioned problem, we propose an approach called consistence labeling. After such labeling process, we track this person by the JVPDA algorithm. Finally, effectiveness of this tracking algorithm is validated via extensive experiments. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T16:26:46Z (GMT). No. of bitstreams: 1 ntu-94-R92921005-1.pdf: 8426835 bytes, checksum: 3505e4ad06dc90069134eb07068cb7f7 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 摘要 I
ABSTRACT II CONTENTS IV CHAPTER 1 1 INTRODUCTION 1 1.1 MOTIVATION 2 1.2 BRIEF LITERATURE REVIEW 3 1.3 CONTRIBUTION 6 1.4 THESIS ORGANIZATION 7 CHAPTER 2 9 PRELIMINARIES 9 2.1 FUNDAMENTAL IMAGE PROCESSING METHODS 9 2.1.1 GRADIENT EDGE DETECTION 9 2.1.2 TEMPLATE MATCHING 10 2.2 ELLIPSE METHOD FOR HUMAN TRACKING 14 2.2.1 ELLIPTICAL OUTLINE CONSTRUCTION 15 2.2.2 ELLIPSE ALGORITHM 18 2.3 COORDINATE TRANSFORMATION 21 CHAPTER 3 27 HUMAN TRACKING ALGORITHM IN A SINGLE CAMERA ENVIRONMENT 27 3.1 ARCHITECTURE OVERVIEW 27 3.2 MOTION DETECTOR 29 3.3 HYBRID VISUAL TRACKING ALGORITHM FOR HUMAN TRACKING 34 3.4 TRAJECTORY PREDICTION BASED ON JOINT VISUAL PROBABILISTIC DATA ASSOCIATION FILTER 38 3.4.1 REVIEW OF KALMAN FILTER 39 3.4.2 SINGLE TARGET TRACKING USING PROBABILISTIC DATA ASSOCIATION FILTER 42 3.4.3 MULTIPLE TARGET TRACKING USING JOINT PROBABILISTIC DATA ASSOCIATION FILTER 48 3.4.4 VISUAL PROBABILISTIC DATA ASSOCIATION FILTER AND JOINT VISUAL PROBABILISTIC DATA ASSOCIATION FILTER 54 3.5 EXPERIMENTAL RESULTS 63 CHAPTER 4 78 HUMAN TRACKING ALGORITHM IN A MULTI-CAMERA ENVIRONMENT 78 4.1 ARCHITECTURE OVERVIEW 78 4.2 CONSISTENCE LABELING OF TRACKED PERSON IN A MULTI-CAMERA SYSTEM 80 4.2.1 GEOMETRY-BASED CORRESPONDENCE 82 4.2.2 RECOGNITION-BASED CORRESPONDENCE 88 4.3 MULTIPLE PEOPLE TRACKING ALGORITHM UTILIZING INTEGRATION OF SINGLE CAMERA SYSTEMS 89 4.4 EXPERIMENTAL RESULTS 92 CHAPTER 5 104 CONCLUSION AND FUTURE WORK 104 5.1 CONCLUSION 104 5.2 FUTURE WORK 106 REFERENCES 107 | |
| dc.language.iso | zh-TW | |
| dc.subject | 橢圓演算法 | zh_TW |
| dc.subject | 模版比對 | zh_TW |
| dc.subject | 聯合機率資料連結 | zh_TW |
| dc.subject | 多人物追蹤 | zh_TW |
| dc.subject | 多相機系統 | zh_TW |
| dc.subject | 運動偵測 | zh_TW |
| dc.subject | 身份辨識 | zh_TW |
| dc.subject | Consistence labeling | en |
| dc.subject | Motion Detector | en |
| dc.subject | Ellipse Algorithm | en |
| dc.subject | Template Matching | en |
| dc.subject | Joint Visual Probabilistic Data Association | en |
| dc.subject | Multiple People Tracking | en |
| dc.subject | Multi-camera System | en |
| dc.title | 複雜背景下多相機之多目標物影像追蹤系統 | zh_TW |
| dc.title | Multiple People Visual Tracking in a Multi-Camera System for Cluttered Environment | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 洪一平(Yi-Ping Hung),簡忠漢,張文中,胡竹生(Jwu-Sheng Hu) | |
| dc.subject.keyword | 運動偵測,橢圓演算法,模版比對,聯合機率資料連結,多人物追蹤,多相機系統,身份辨識, | zh_TW |
| dc.subject.keyword | Motion Detector,Ellipse Algorithm,Template Matching,Joint Visual Probabilistic Data Association,Multiple People Tracking,Multi-camera System,Consistence labeling, | en |
| dc.relation.page | 111 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-15 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 8.23 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
