請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38124
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 莊榮輝(Rong-Huay Juang) | |
dc.contributor.author | Chou-Chi Yeh | en |
dc.contributor.author | 葉昭圻 | zh_TW |
dc.date.accessioned | 2021-06-13T16:26:42Z | - |
dc.date.available | 2005-07-22 | |
dc.date.copyright | 2005-07-22 | |
dc.date.issued | 2005 | |
dc.date.submitted | 2005-07-15 | |
dc.identifier.citation | 莊榮輝 (1985) 水稻蔗糖合成脢之研究 博士論文 國立台灣大學 台北
陳翰民 (1997) 甘藷澱粉磷解脢構造與功能之研究 博士論文 國立台灣大學 台北 吳其真 (1998) 甘藷澱粉磷解脢之生化及免疫學研究 碩士論文 國立台灣大學 台北 張世宗 (1999) 甘藷塊根Chaperonin及Proteasome之分離與性質研究 博士論文 國立台灣大學 台北 林珮君 (2000) 甘藷塊根澱粉磷解脢在澱粉代謝之角色探討 碩士論文 國立台灣大學 台北 陳安娜 (2001) 甘藷塊根澱粉磷解脢降解路徑的探討與Proreasome的結合關係 碩士論文 國立台灣大學 台北 林怡岑 (2003) 甘藷塊根澱粉磷解脢與Proteasome之結合與降解關係 碩士論文 國立台灣大學 台北 曾光靖 (2005) 磷酸化修飾對甘藷塊根L型澱粉磷解脢之影響 碩士論文 國立台灣大學 台北 楊光華 (2005) 甘藷塊根澱粉磷解脢激脢之純化與性質分析 博士論文 國立台灣大學 台北 Alfonso M, Yruela I, Almarcegui S, Torrado E, Perez MA, Picorel R (2001) Unusual tolerance to high temperatures in a new herbicide-resistant D1 mutant from Glycine max (L.) Merr. Cell cultures deficient in fatty acid desaturation. Planta 212: 573–582 Alison M. Smith, Samuel C. Zeeman, David Thorneycroft and Steven M. Smith (2003) Starch mobilization in leaves. Journal of Experimental Botany 54: 382. Ball S, Guan HP, James M, Myers A, Keeling P, Mouille G, Buleon A, Colonna P, Preiss J (1996) From Glycogen to Amylopectin : A Model for the Biogenesis of the Plant Starch Granule. Cell 86: 349-352 Brisson N, Giroux H, Zollinger M, Camirand A, and Simard C (1989) Maturation and Subcellular Compartmentation of Potato Starch Phosphorylase. Plant Cell 1: 559-566 Chatakanoda P, Chinachoti P, Sriroth K, Piyachomkwan K, Chotineeranat S, Tang HR, Hills B (2003) The influence of time and conditions of harvest on the functional behavior of cassava starch-a proton NMR relaxation study. Carbohydrate Polymers 53: 233-240 Chen W, Provart NJ, Glazebrook J, Katagiri F, Chang HS, Eulgem T, Mauch F, Luan S, Zou G, Whitham SA, Budworth PR, Tao Y, Xie Z, Chen X, Lam S, Kreps JA, Harper JF, Si-Ammour A, Mauch-Mani B, Heinlein M, Kobayashi K, Hohn T, Dangl JL, Wang X, Zhu T (2002) Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 14: 559–574 Correns C (1901) Bastarde zwischen maisrassen, mit besonder Berucksichtung der Xenien. Bibliotheca Bot 53: 1–161 Dat JF, Foyer CH, Scott IM (1998) Changes in salicylic acid and antioxidants during induction of thermotolerance in mustard seedlings. Plant Physiol 118: 1455–1461 Donovan J (1979). Phase transitions of the starch-water system. Biopolymers 18: 263-275 Erlander SR (1958). A proposed mechanism for the synthesis of starch from glycogen Enzymologia 19: 273–283. Gong M, Chen SN, Song YQ, Li ZG (1997a) Effect of calcium and calmodulin on intrinsic heat tolerance in relation to antioxidant systems in maize seedlings. Aust J Plant Physiol 24: 371–379 Gong M, Li X-J, Dai X, Tian M, Li Z-G (1997b) Involvement of calcium and calmodulin in the acquisition of HS induced thermotolerance in maize seedlings. J Plant Physiol 150: 615–621 Horvath I, Glatz A, Varvasovszki V, Torok Z, Pali T, Balogh G, Kovacs E, Nadasdi L, Benko S, Joo F, Vigh L (1998) Membrane physical state controls the signaling mechanism of the heat shock response in SynechocystisPCC 6803: identification of hsp17 as a ‘fluidity gene’. Proc. Natl. Acad. Sci. U. S. A. 95: 3513–3518 Hugly, S. et al. (1989) Enhanced thermal tolerance of photosynthesis and altered chloroplast ultrastructure in a mutant of Arabidopsis deficient in lipid desaturation. Plant Physiol. 90: 1134–1142 Jonak C, Kiegerl S, Ligterink W, Barker PJ, Huskisson NS, Hirt H (1996) Stress signaling in plants: a mitogen-activated protein kinase pathway is activated by cold and drought. Proc. Natl. Acad. Sci. U. S. A. 93: 11274–11279 Karapantsios T.D, Sakonidou E.P, Raphaelides S.N (2002). Water dispersion kinetics during starch gelatinization. Carbohydrate Polymers 49: 479-490 Knight H, Trewavas AJ, Knight MR (1996) Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation . Plant Cell 8:489–503 Kubota K, Hosokawa Y, Suzuki K, Hosaka H (1979) Studies on the gelatinization rate of rice and potato starches. Journal of Food Science 44: 1394-1397 Larkindale, J. and Knight, M.R. (2002) Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol. 128: 682–695 Levitt J (1980). Responses of Plants to Environmental Stresses, Vol. 1: Academic Press.New York. Li S, Dickinson LC, Chinachoti P (1998) Mobility of ‘unfreezable’ and ‘freezable’ water in waxy corn starch by 2H and 1H HMR. Journal of Agricultural and Food Chemistry 46: 62-71 Lichtenthaler , HK. (1988). In vivo chlorophyll fluorescence as a tool for stress detectionin plants. In Applications of Chlorophyll Fluorescence., Ed: 129–142. Lichtenthaler , HK. (1998). The stress concept in plants: an introduction. Ann N Y Acad Sci. 30; 851: 187-98 Mori H, Tanizawa K, and Fukui T. (1993) A Chimeric a-Glucan Phosphorylase of Plant Type L and H Isozymes. Journal of Biological Chemistry 268: 5574-5581 Nakano K, and Fukui T. (1986) The Complete Amino Acid Sequence of Potato a-Glucan Phosphorylase. Journal of Biological Chemistry.261:.8230-8236 Okechukwu PE, Rao MA, Ngoddy PO, McWatters KH (1991) Flow behavior and gelatinization of cowpea flour and starch dispersions. Journal of Food Science 56: 1311-1315 Pan D, and Nelson O.E. (1984). A debranching enzyme deficiency in endosperms of the sugary-1 mutants of maize. Plant Physiol 74: 324–328 Rojas A, Almoguera C, Jordano J (1999) Transcriptional activation of a heat shock gene promoter in sunflower embryos: synergism between ABI 3 and heat shock factors. Plant J 20: 601–610 Sangwan V, Orvar BL, Beyerly J, Hirt H, Dhindsa RS (2002) Opposite changes in membrane fluidity mimic cold and heat stress activation of distinct plant MAP kinase pathways. Plant J. 31: 629–638 Schett G, Steiner CW, Groger M, Winkler S, Graninger W, Smolen J, Xu Q, Steiner G (1999) Activation of Fas inhibits heat induced activation of HSF1 and upregulation of HSP70. FASEB J 13: 833–842 Schneider EM, Becker JU, Volkmann D (1979) The role of phosphorylase in plant storage tissue studied by immunological methods. Hoppe Seylers Z Physiol Chem 960: 369-370 Slade L, Levine H (1991) Beyond water activity : recent advances based on an alternative approach to the assesment of food quality and safety. Critical Reviews in Food Science and Nutrition 30 (2-3) : 115-360 Storozhenko S, De Pauw P, Van Montagu M, Kushnir S (1998) The heat shock element is a functional component of the Arabidopsis APX1 gene promoter. Plant Physiol 116: 1005–1014 Tananuwong K, Reid DS (2004) DSC and NMR relaxation studies of starch-water interactions during gelatinization. Carbohydrate Polymers 58: 345-358 Vallelian-Bindschedler L, Schweizer P, Mosinger E, Metraux JP (1998) Heat induced resistance in barley to powdery mildew (Blumeria graminis f. sp. hordei) is associated with a bust of AOS. Physiol Mol Plant Pathol 52: 185–199 Wu SH, Wong C, Chen J, Lin BC (1994). Isolation of a cDNA encoding a 70 kDa heat shock cognate protein expressed in the vegetative tissue of Arabidopsis. Plant Mol Biol 25: 577–583 Zeeman SC, Thorneycroft D, Schupp N, Chapple A, Weck M, Dunstan H, Haldimann P, Bechtold N, Smith AM, and Smith SM (2004) Plastidial | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38124 | - |
dc.description.abstract | 植物的L型澱粉磷解脢 (L-form starch phosphorylase, L-SP) 在其分子中央,較動物的肝醣磷解脢多出一段由78個胺基酸組成的片段 (L78)。因為胺基酸序列及結構特殊的關係,L78極易斷裂,造成L-SP分子裂解成兩群分子量 (約50 kD) 相近的片段 (統稱F50s)。將甘藷塊根切片加熱至45℃ 以上會使L-SP之泳動率改變,產生規律之階段式降解;隨著加熱反應時間的增加,Anti-L78P抗體最早失去辨識L-SP的能力,因此推論降解過程乃先移除中央之L78;接著J3b無法辨識L-SP,因此降解由L78繼續朝N-端方向進行,而H7c結合的區域 (L-SP之C-端) 較少發生降解。在甘藷塊根加熱過程中,當溫度與濕度到達一定程度,甘藷塊根切片便產生糊化現象:由掃描式電顯得知,溫度處理造成澱粉粒破裂。此外,由切片上不同區域的原態電泳檢定,發現糊化與L-SP的降解有正相關性:且隨著甘藷切片糊化程度的不同,L-SP產生階段式降解。因此我們推測,甘藷切片在高溫處理下,內部的澱粉粒因糊化而破裂,當胞器破裂後,L-SP被其他酵素降解機會增加,因而產生所觀察到的階段式降解。 | zh_TW |
dc.description.abstract | In the middle of plant L-form starch phosphorylase (L-SP), a 78-amino acid insertion (L78) is found when compared with its counterpart in animal cells, glycogen phosphorylase. L78 is susceptible to multiple proteolytic cuttings because of its unique amino acid sequence and molecular structure.It was found that L-SP is cleaved into two groups of fragments with the molecular mass around 50 kD (F50s). When the sweet potato roots were heated at 45℃, the mobility of L-SP was changed on native-PAGE gel electrophoresis. The immunostaining pattern using Anti-L78P as the probe revealed that heating induced the cleavage of L-SP molecules on the L78 initially. Part of the N-terminal half of L-SP was then cleaved, but the C-terminal part remained intact. Although L-SP was proteolytically modified , it still remained its native structure as well as the enzymatic activity. The heating process induced the gelatinization of the sweet potato root slice when the temperature and humidity achieved the optimal condition. The gelatinization of sweet potato roots that caused the collapse of starch granules was confirmed by SEM. In addition, it was found that the sequential degradation of L-SP was correlated with the gelatinization by comparing the L-SP from gelatinized and un-gelatinized tissues. Therefore, we conclude that heat treatment induce the gelatinization inside sweet potato roots. This process accelerates the breaking down of the amyloplast, which might correlates with the sequential degradation of the plastidal enzyme, L-SP. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T16:26:42Z (GMT). No. of bitstreams: 1 ntu-94-R92b47209-1.pdf: 2103300 bytes, checksum: 553e8d25124eb2530662ec3052a8c075 (MD5) Previous issue date: 2005 | en |
dc.description.tableofcontents | 目錄 1
中文摘要 3 ABSTRACT 4 第一章 概論 5 1.1 澱粉磷解脢 5 1.1.1 澱粉磷解脢分類 5 1.1.2 澱粉磷解脢的生理功能 6 1.1.3 澱粉磷解脢的分子構造 6 1.1.4 L78序列分析 7 1.2 植物逆境 (PLANT STRESS) 7 1.2.1溫度逆境 8 1.2.2 溫度逆境所引起的反應 13 1.3 澱粉粒 (STARCH GRANULE) 14 1.3.1 澱粉粒之形成 14 1.3.2 澱粉粒糊化機制 15 1.4 研究動機 17 第二章 材料與方法 18 2.1 電泳檢定法 18 2.1.1 原態膠體電泳 18 2.1.2 SDS膠體電泳 21 2.1.3 可溶性澱粉親和性電泳 : 23 2.1.4 二次元電泳 24 2.1.5 CyDye-DIGE 27 2.1.6 膠體染色法 29 2.1.7 膠片乾燥法及護貝 31 2.1.8 蛋白質電泳轉印法 32 2.1.9 膠體內蛋白質水解 33 2.2 一般分析法 35 2.2.1 蛋白質定量 35 2.2.2 二次元電泳之蛋白質定量 36 2.3 甘藷45℃溫度處理實驗 37 第三章 結果與討論 38 3.1 甘藷澱粉磷解脢之階段式降解 38 3.2 糊化與溫度、濕度之關係 38 3.3 糊化與L-SP降解之關係 39 3.4 甘藷塊根澱粉粒電顯圖 40 3.5 階段式降解L-SP的生化性質分析 41 3.6 不同溫度處理之二維電泳圖譜 41 3.7 甘藷發芽前後的L-SP 42 第四章 結論 59 參考文獻 60 | |
dc.language.iso | zh-TW | |
dc.title | 甘藷塊根澱粉磷解脢高溫下階段式降解之探討 | zh_TW |
dc.title | The Studies of Proteolytic Degradation of L-form Starch Phosphorylase from Sweet Potato Roots | en |
dc.type | Thesis | |
dc.date.schoolyear | 93-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林耀輝(Yaw-Huei Lin),林棋財(Chi-Tsai Lin),陳翰民(Han-Min Chen),楊健志(Chien-Chih Yang) | |
dc.subject.keyword | 澱粉磷解脢, | zh_TW |
dc.subject.keyword | Starch Phosphorylase, | en |
dc.relation.page | 64 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2005-07-15 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 微生物與生化學研究所 | zh_TW |
顯示於系所單位: | 微生物學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-94-1.pdf 目前未授權公開取用 | 2.05 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。