Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38121
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周謀鴻(Mo-Hong Chou)
dc.contributor.authorYU-HUNG CHENGen
dc.contributor.author陳彧弘zh_TW
dc.date.accessioned2021-06-13T16:26:40Z-
dc.date.available2005-08-01
dc.date.copyright2005-07-20
dc.date.issued2005
dc.date.submitted2005-07-15
dc.identifier.citation[1] Walter A. Strauss (1992). “Partial differential equations : an introduction,” 82-89, 169-178, 245-248, 304-313.
[2] Richard L. Burden, J. Douglas Faires (2001). “Numerical analysis 7th ed,” 550-595.
[3] Gene H. Golub, Charles F. Van Loan (1996). “Matrix computations 3rd ed,” 206-229, 412-422, 461-467.
[4] Darrell W. Pepper, Juan C.Heinrich (1973). “The Finite Element Method : Basic Concepts and Applications,” 5-96.
[5] Leon Lapidus, George F. Pinder (1982). “Numerical solution of partial differential equations in science and engineering,” 111-120.
[6] O. Axelsson, V. A. Barker (1984). “Finite element solution of boundary value problems : theory and computation,” 163-206.
[7] Pascal Jean Frey, Paul-Louis George (2000). “Mesh generation : application to finite elements.”
[8] Philippe G. Ciarlet (2002). “The finite element method for elliptic problems.”
[9] A. R. Gourlay, G. A. Watson (1973). “Computational methods for matrix Eigenproblems.”
[10] Wilkinson, J. H. (1968). “Handbook for automatic computation.”
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38121-
dc.description.abstractWhen the drumhead vibrating, there are some lines keep still. These “nodal lines” are what we are interesting in. In this text, we want to solve the eigenvalue problem on right polygonal area and find out some properties about the eigenvalues from the numerical results.
First, we divide the drumhead into triangle elements and use the finite element method to generate a matrix generalized eigenvalue problem. Second, apply the Cholesky decomposition on the so-called “mass matrix” and transfer the problem to a standard eigenvalue problem. Finally, we use the Householder reflections to simplify the matrix we want to solve into tridiagonal form and apply shifted QR algorithm to get its approximation eigenvalues.
In the latest chapter, we will make some observations from the numerical results. By varying the drumhead’s edge number, area and element’s size, we can see the different changes about the eigenvalues. But when the drumhead’s edge number increase, we can find that both the eigenvalues and nodal sets will converge.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T16:26:40Z (GMT). No. of bitstreams: 1
ntu-94-R91221015-1.pdf: 369795 bytes, checksum: 394fbc14c50490bc48a907b8f89418e8 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontentsAbstract
Chapter 1. Basic conceptions 1
1.1 Introduction 1
1.2 Green’s identity 2
1.3 Properties of the eigenvalues 3
Chapter 2. The Finite element method 5
2.1 Basic of the FEM 5
2.2 Discretize the eigenvalue problem 6
2.3 The stiffness matrix 7
2.4 The mass matrix 8
Chapter 3. Solve the problem 10
3.1 Generalized eigenvalue problem 10
3.2 Householder Reflections 13
3.3 The QR algorithm with shifts 15
Chapter 4. Results and Discussions 18
Appendixes 31
A. The integration of the product of the Area Coordinates 31
B. Householder transformation 32
References 35
dc.language.isoen
dc.title多邊形鼓膜振動問題固有值之數值分析zh_TW
dc.titleNumerical eigen analysis of the vibrating drumhead with polygonal sideen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳宜良(I-Liang Chern),王偉成(Wei-Cheng Wang)
dc.subject.keyword固有值,鼓膜,數值分析,zh_TW
dc.subject.keywordeigenvalue,numerical analysis,en
dc.relation.page35
dc.rights.note有償授權
dc.date.accepted2005-07-15
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  目前未授權公開取用
361.13 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved