請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38121
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 周謀鴻(Mo-Hong Chou) | |
dc.contributor.author | YU-HUNG CHENG | en |
dc.contributor.author | 陳彧弘 | zh_TW |
dc.date.accessioned | 2021-06-13T16:26:40Z | - |
dc.date.available | 2005-08-01 | |
dc.date.copyright | 2005-07-20 | |
dc.date.issued | 2005 | |
dc.date.submitted | 2005-07-15 | |
dc.identifier.citation | [1] Walter A. Strauss (1992). “Partial differential equations : an introduction,” 82-89, 169-178, 245-248, 304-313.
[2] Richard L. Burden, J. Douglas Faires (2001). “Numerical analysis 7th ed,” 550-595. [3] Gene H. Golub, Charles F. Van Loan (1996). “Matrix computations 3rd ed,” 206-229, 412-422, 461-467. [4] Darrell W. Pepper, Juan C.Heinrich (1973). “The Finite Element Method : Basic Concepts and Applications,” 5-96. [5] Leon Lapidus, George F. Pinder (1982). “Numerical solution of partial differential equations in science and engineering,” 111-120. [6] O. Axelsson, V. A. Barker (1984). “Finite element solution of boundary value problems : theory and computation,” 163-206. [7] Pascal Jean Frey, Paul-Louis George (2000). “Mesh generation : application to finite elements.” [8] Philippe G. Ciarlet (2002). “The finite element method for elliptic problems.” [9] A. R. Gourlay, G. A. Watson (1973). “Computational methods for matrix Eigenproblems.” [10] Wilkinson, J. H. (1968). “Handbook for automatic computation.” | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38121 | - |
dc.description.abstract | When the drumhead vibrating, there are some lines keep still. These “nodal lines” are what we are interesting in. In this text, we want to solve the eigenvalue problem on right polygonal area and find out some properties about the eigenvalues from the numerical results.
First, we divide the drumhead into triangle elements and use the finite element method to generate a matrix generalized eigenvalue problem. Second, apply the Cholesky decomposition on the so-called “mass matrix” and transfer the problem to a standard eigenvalue problem. Finally, we use the Householder reflections to simplify the matrix we want to solve into tridiagonal form and apply shifted QR algorithm to get its approximation eigenvalues. In the latest chapter, we will make some observations from the numerical results. By varying the drumhead’s edge number, area and element’s size, we can see the different changes about the eigenvalues. But when the drumhead’s edge number increase, we can find that both the eigenvalues and nodal sets will converge. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T16:26:40Z (GMT). No. of bitstreams: 1 ntu-94-R91221015-1.pdf: 369795 bytes, checksum: 394fbc14c50490bc48a907b8f89418e8 (MD5) Previous issue date: 2005 | en |
dc.description.tableofcontents | Abstract
Chapter 1. Basic conceptions 1 1.1 Introduction 1 1.2 Green’s identity 2 1.3 Properties of the eigenvalues 3 Chapter 2. The Finite element method 5 2.1 Basic of the FEM 5 2.2 Discretize the eigenvalue problem 6 2.3 The stiffness matrix 7 2.4 The mass matrix 8 Chapter 3. Solve the problem 10 3.1 Generalized eigenvalue problem 10 3.2 Householder Reflections 13 3.3 The QR algorithm with shifts 15 Chapter 4. Results and Discussions 18 Appendixes 31 A. The integration of the product of the Area Coordinates 31 B. Householder transformation 32 References 35 | |
dc.language.iso | en | |
dc.title | 多邊形鼓膜振動問題固有值之數值分析 | zh_TW |
dc.title | Numerical eigen analysis of the vibrating drumhead with polygonal side | en |
dc.type | Thesis | |
dc.date.schoolyear | 93-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳宜良(I-Liang Chern),王偉成(Wei-Cheng Wang) | |
dc.subject.keyword | 固有值,鼓膜,數值分析, | zh_TW |
dc.subject.keyword | eigenvalue,numerical analysis, | en |
dc.relation.page | 35 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2005-07-15 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 數學研究所 | zh_TW |
顯示於系所單位: | 數學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-94-1.pdf 目前未授權公開取用 | 361.13 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。