請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38119完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 莊寧寧(Nin-Nin Chuang) | |
| dc.contributor.author | LING-YUN CHU | en |
| dc.contributor.author | 儲凌雲 | zh_TW |
| dc.date.accessioned | 2021-06-13T16:26:39Z | - |
| dc.date.available | 2005-07-26 | |
| dc.date.copyright | 2005-07-26 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-15 | |
| dc.identifier.citation | Aitken, A., D.B. Collinge, B.P. van Heusden, T. Isobe, P.H. Roseboom, G. Rosenfeld, and J. Soll. 1992. 14-3-3 proteins: a highly conserved, widespread family of eukaryotic proteins. Trends Biochem Sci. 17:498-501.
Angenstein, F., A.M. Evans, R.E. Settlage, S.T. Moran, S.C. Ling, A.Y. Klintsova, J. Shabanowitz, D.F. Hunt, and W.T. Greenough. 2002. A receptor for activated C kinase is part of messenger ribonucleoprotein complexes associated with polyA-mRNAs in neurons. J Neurosci. 22:8827-37. Bar-Sagi, D. 2001. A Ras by any other name. Mol Cell Biol. 21:1441-3. Barbacid, M. 1987. ras genes. Annu Rev Biochem. 56:779-827. Cacace, A.M., N.R. Michaud, M. Therrien, K. Mathes, T. Copeland, G.M. Rubin, and D.K. Morrison. 1999. Identification of constitutive and ras-inducible phosphorylation sites of KSR: implications for 14-3-3 binding, mitogen-activated protein kinase binding, and KSR overexpression. Mol Cell Biol. 19:229-40. Ceci, M., C. Gaviraghi, C. Gorrini, L.A. Sala, N. Offenhauser, P.C. Marchisio, and S. Biffo. 2003. Release of eIF6 (p27BBP) from the 60S subunit allows 80S ribosome assembly. Nature. 426:579-84. Chang, B.Y., K.B. Conroy, E.M. Machleder, and C.A. Cartwright. 1998. RACK1, a receptor for activated C kinase and a homolog of the beta subunit of G proteins, inhibits activity of src tyrosine kinases and growth of NIH 3T3 cells. Mol Cell Biol. 18:3245-56. Chang, H.C., and G.M. Rubin. 1997. 14-3-3 epsilon positively regulates Ras-mediated signaling in Drosophila. Genes Dev. 11:1132-9. Chaudhri, M., M. Scarabel, and A. Aitken. 2003. Mammalian and yeast 14-3-3 isoforms form distinct patterns of dimers in vivo. Biochem Biophys Res Commun. 300:679-85. Chen, W.Y., Y.M. Yang, and N.N. Chuang. 2002. Selective enhanced phosphorylation of shrimp beta-tubulin by PKC-delta with PEP(taxol), a synthetic peptide encoding the taxol binding region. J Exp Zool. 292:376-83. Choi, K.Y., B. Satterberg, D.M. Lyons, and E.A. Elion. 1994. Ste5 tethers multiple protein kinases in the MAP kinase cascade required for mating in S. cerevisiae. Cell. 78:499-512. Chu, L.Y., Y.H. Chen, and N.N. Chuang. 2005. Dimerize RACK1 upon transformation with oncogenic ras. Biochem Biophys Res Commun. 330:474-82. Cotelle, V., S.E. Meek, F. Provan, F.C. Milne, N. Morrice, and C. MacKintosh. 2000. 14-3-3s regulate global cleavage of their diverse binding partners in sugar-starved Arabidopsis cells. Embo J. 19:2869-76. Denouel-Galy, A., E.M. Douville, P.H. Warne, C. Papin, D. Laugier, G. Calothy, J. Downward, and A. Eychene. 1998. Murine Ksr interacts with MEK and inhibits Ras-induced transformation. Curr Biol. 8:46-55. Elion, E.A. 2001. The Ste5p scaffold. J Cell Sci. 114:3967-78. Ford, J.C., F. al-Khodairy, E. Fotou, K.S. Sheldrick, D.J. Griffiths, and A.M. Carr. 1994. 14-3-3 protein homologs required for the DNA damage checkpoint in fission yeast. Science. 265:533-5. Fu, H., R.R. Subramanian, and S.C. Masters. 2000. 14-3-3 proteins: structure, function, and regulation. Annu Rev Pharmacol Toxicol. 40:617-47. Fu, H., K. Xia, D.C. Pallas, C. Cui, K. Conroy, R.P. Narsimhan, H. Mamon, R.J. Collier, and T.M. Roberts. 1994. Interaction of the protein kinase Raf-1 with 14-3-3 proteins. Science. 266:126-9. Garrington, T.P., and G.L. Johnson. 1999. Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr Opin Cell Biol. 11:211-8. Geijsen, N., M. Spaargaren, J.A. Raaijmakers, J.W. Lammers, L. Koenderman, and P.J. Coffer. 1999. Association of RACK1 and PKCbeta with the common beta-chain of the IL-5/IL-3/GM-CSF receptor. Oncogene. 18:5126-30. He, D.Y., A.J. Vagts, R. Yaka, and D. Ron. 2002. Ethanol induces gene expression via nuclear compartmentalization of receptor for activated C kinase 1. Mol Pharmacol. 62:272-80. Huang, J.W., C.L. Chen, and N.N. Chuang. 2005. Trap RACK1 with Ras to mobilize Src signaling at syndecan-2/p120-GAP upon transformation with oncogenic ras. Biochem Biophys Res Commun. 330:1087-94. Hurley, J.H., A.C. Newton, P.J. Parker, P.M. Blumberg, and Y. Nishizuka. 1997. Taxonomy and function of C1 protein kinase C homology domains. Protein Sci. 6:477-80. Karandikar, M., and M.H. Cobb. 1999. Scaffolding and protein interactions in MAP kinase modules. Cell Calcium. 26:219-26. Kiely, P.A., A. Sant, and R. O'Connor. 2002. RACK1 is an insulin-like growth factor 1 (IGF-1) receptor-interacting protein that can regulate IGF-1-mediated Akt activation and protection from cell death. J Biol Chem. 277:22581-9. Kockel, L., G. Vorbruggen, H. Jackle, M. Mlodzik, and D. Bohmann. 1997. Requirement for Drosophila 14-3-3 zeta in Raf-dependent photoreceptor development. Genes Dev. 11:1140-7. Kornfeld, K., D.B. Hom, and H.R. Horvitz. 1995. The ksr-1 gene encodes a novel protein kinase involved in Ras-mediated signaling in C. elegans. Cell. 83:903-13. Lambright, D.G., J. Sondek, A. Bohm, N.P. Skiba, H.E. Hamm, and P.B. Sigler. 1996. The 2.0 A crystal structure of a heterotrimeric G protein. Nature. 379:311-9. Lane, L.C. 1978. A simple method for stabilizing protein-sulfhydryl groups during SDS-gel electrophoresis. Anal Biochem. 86:655-64. Liliental, J., and D.D. Chang. 1998. Rack1, a receptor for activated protein kinase C, interacts with integrin beta subunit. J Biol Chem. 273:2379-83. Luttrell, L.M., and R.J. Lefkowitz. 2002. The role of beta-arrestins in the termination and transduction of G-protein-coupled receptor signals. J Cell Sci. 115:455-65. Mamidipudi, V., J. Zhang, K.C. Lee, and C.A. Cartwright. 2004. RACK1 regulates G1/S progression by suppressing Src kinase activity. Mol Cell Biol. 24:6788-98. McCahill, A., J. Warwicker, G.B. Bolger, M.D. Houslay, and S.J. Yarwood. 2002. The RACK1 scaffold protein: a dynamic cog in cell response mechanisms. Mol Pharmacol. 62:1261-73. Merrifield, B. 1986. Solid phase synthesis. Science. 232:341-7. Michaud, N.R., M. Therrien, A. Cacace, L.C. Edsall, S. Spiegel, G.M. Rubin, and D.K. Morrison. 1997. KSR stimulates Raf-1 activity in a kinase-independent manner. Proc Natl Acad Sci U S A. 94:12792-6. Mourton, T., C.B. Hellberg, S.M. Burden-Gulley, J. Hinman, A. Rhee, and S.M. Brady-Kalnay. 2001. The PTPmu protein-tyrosine phosphatase binds and recruits the scaffolding protein RACK1 to cell-cell contacts. J Biol Chem. 276:14896-901. Muller, J., S. Ory, T. Copeland, H. Piwnica-Worms, and D.K. Morrison. 2001. C-TAK1 regulates Ras signaling by phosphorylating the MAPK scaffold, KSR1. Mol Cell. 8:983-93. Ory, S., M. Zhou, T.P. Conrads, T.D. Veenstra, and D.K. Morrison. 2003. Protein phosphatase 2A positively regulates Ras signaling by dephosphorylating KSR1 and Raf-1 on critical 14-3-3 binding sites. Curr Biol. 13:1356-64. Rittinger, K., J. Budman, J. Xu, S. Volinia, L.C. Cantley, S.J. Smerdon, S.J. Gamblin, and M.B. Yaffe. 1999. Structural analysis of 14-3-3 phosphopeptide complexes identifies a dual role for the nuclear export signal of 14-3-3 in ligand binding. Mol Cell. 4:153-66. Ron, D., C.H. Chen, J. Caldwell, L. Jamieson, E. Orr, and D. Mochly-Rosen. 1994. Cloning of an intracellular receptor for protein kinase C: a homolog of the beta subunit of G proteins. Proc Natl Acad Sci U S A. 91:839-43. Ron, D., Z. Jiang, L. Yao, A. Vagts, I. Diamond, and A. Gordon. 1999. Coordinated movement of RACK1 with activated betaIIPKC. J Biol Chem. 274:27039-46. Rosenquist, M., M. Alsterfjord, C. Larsson, and M. Sommarin. 2001. Data mining the Arabidopsis genome reveals fifteen 14-3-3 genes. Expression is demonstrated for two out of five novel genes. Plant Physiol. 127:142-9. Rosenquist, M., P. Sehnke, R.J. Ferl, M. Sommarin, and C. Larsson. 2000. Evolution of the 14-3-3 protein family: does the large number of isoforms in multicellular organisms reflect functional specificity? J Mol Evol. 51:446-58. Schaeffer, H.J., and M.J. Weber. 1999. Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol Cell Biol. 19:2435-44. Schagger, H., and G. von Jagow. 1987. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 166:368-79. Schlessinger, J., and D. Bar-Sagi. 1994. Activation of Ras and other signaling pathways by receptor tyrosine kinases. Cold Spring Harb Symp Quant Biol. 59:173-9. Sundaram, M., and M. Han. 1995. The C. elegans ksr-1 gene encodes a novel Raf-related kinase involved in Ras-mediated signal transduction. Cell. 83:889-901. Tcherkasowa, A.E., S. Adam-Klages, M.L. Kruse, K. Wiegmann, S. Mathieu, W. Kolanus, M. Kronke, and D. Adam. 2002. Interaction with factor associated with neutral sphingomyelinase activation, a WD motif-containing protein, identifies receptor for activated C-kinase 1 as a novel component of the signaling pathways of the p55 TNF receptor. J Immunol. 169:5161-70. Teis, D., W. Wunderlich, and L.A. Huber. 2002. Localization of the MP1-MAPK scaffold complex to endosomes is mediated by p14 and required for signal transduction. Dev Cell. 3:803-14. Therrien, M., H.C. Chang, N.M. Solomon, F.D. Karim, D.A. Wassarman, and G.M. Rubin. 1995. KSR, a novel protein kinase required for RAS signal transduction. Cell. 83:879-88. Therrien, M., N.R. Michaud, G.M. Rubin, and D.K. Morrison. 1996. KSR modulates signal propagation within the MAPK cascade. Genes Dev. 10:2684-95. Tzivion, G., Z. Luo, and J. Avruch. 1998. A dimeric 14-3-3 protein is an essential cofactor for Raf kinase activity. Nature. 394:88-92. Verhey, K.J., D. Meyer, R. Deehan, J. Blenis, B.J. Schnapp, T.A. Rapoport, and B. Margolis. 2001. Cargo of kinesin identified as JIP scaffolding proteins and associated signaling molecules. J Cell Biol. 152:959-70. Volle, D.J., J.A. Fulton, O.V. Chaika, K. McDermott, H. Huang, L.A. Steinke, and R.E. Lewis. 1999. Phosphorylation of the kinase suppressor of ras by associated kinases. Biochemistry. 38:5130-7. Wang, W., and D.C. Shakes. 1996. Molecular evolution of the 14-3-3 protein family. J Mol Evol. 43:384-98. Whitmarsh, A.J., and R.J. Davis. 1998. Structural organization of MAP-kinase signaling modules by scaffold proteins in yeast and mammals. Trends Biochem Sci. 23:481-5. Wu, K., G. Lu, P. Sehnke, and R.J. Ferl. 1997. The heterologous interactions among plant 14-3-3 proteins and identification of regions that are important for dimerization. Arch Biochem Biophys. 339:2-8. Xing, H., K. Kornfeld, and A.J. Muslin. 1997. The protein kinase KSR interacts with 14-3-3 protein and Raf. Curr Biol. 7:294-300. Xing, H., S. Zhang, C. Weinheimer, A. Kovacs, and A.J. Muslin. 2000. 14-3-3 proteins block apoptosis and differentially regulate MAPK cascades. Embo J. 19:349-58. Yaffe, M.B. 2002. How do 14-3-3 proteins work?-- Gatekeeper phosphorylation and the molecular anvil hypothesis. FEBS Lett. 513:53-7. Yaka, R., D.Y. He, K. Phamluong, and D. Ron. 2003. Pituitary adenylate cyclase-activating polypeptide (PACAP(1-38)) enhances N-methyl-D-aspartate receptor function and brain-derived neurotrophic factor expression via RACK1. J Biol Chem. 278:9630-8. Yaka, R., C. Thornton, A.J. Vagts, K. Phamluong, A. Bonci, and D. Ron. 2002. NMDA receptor function is regulated by the inhibitory scaffolding protein, RACK1. Proc Natl Acad Sci U S A. 99:5710-5. Yarwood, S.J., M.R. Steele, G. Scotland, M.D. Houslay, and G.B. Bolger. 1999. The RACK1 signaling scaffold protein selectively interacts with the cAMP-specific phosphodiesterase PDE4D5 isoform. J Biol Chem. 274:14909-17. Yu, W., W.J. Fantl, G. Harrowe, and L.T. Williams. 1998. Regulation of the MAP kinase pathway by mammalian Ksr through direct interaction with MEK and ERK. Curr Biol. 8:56-64. Zhou, M., D.A. Horita, D.S. Waugh, R.A. Byrd, and D.K. Morrison. 2002. Solution structure and functional analysis of the cysteine-rich C1 domain of kinase suppressor of Ras (KSR). J Mol Biol. 315:435-46. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38119 | - |
| dc.description.abstract | 在本實驗中,我們從處於分裂期的斑馬魚胚胎分離出作用中的KSR (Kinase Suppressor of Ras)蛋白複合體,在純化KSR的過程中,我們發現RACK1 (Receptor for Activated C Kinase 1) 和KSR之間可能有交互作用存在,經免疫沉澱法證實RACK1存在於斑馬魚KSR蛋白複合體中。為了探討KSR與RACK1的關係,我們使用大腸桿菌表現的重組RACK1進行實驗,重組14-3-3β作為平行實驗,分別以大腸桿菌表現的重組KSR與從斑馬魚胚胎純化的KSR,透過RACK1或14-3-3β的親和力管柱(affinity column)進行結合測試,我們發現大腸桿菌表現出的重組KSR蛋白無法與RACK1或14-3-3β親和力管柱結合,而從斑馬魚胚胎純化的KSR則可以。將純化的斑馬魚KSR與重組RACK1先進行結合反應後,我們發現RACK1與KSR的結合會干擾KSR與14-3-3親和力管柱的結合,因此RACK1在KSR上的作用可能和KSR的位置轉移有關。為了探討RACK1在細胞中是否與KSR的位置轉移有關,我們使用小鼠細胞株BALB/3T3進行實驗,利用免疫沉澱法我們發現RACK1只在10%胎牛血清培養的BALB/3T3細胞中與KSR結合,而在缺乏10%胎牛血清培養24小時的細胞中則不會結合。在進行免疫沉澱的實驗中,我們發現斑馬魚KSR與RACK1的結合需要磷酸的參與,而在BALB/3T3細胞中,此交互作用部份需要磷酸參與,部分則不需要。我們使用RACK1的siRNA抑制RACK1在細胞中的表現,72小時後RACK1的表現量約為正常量的一半。我們發現由表皮生長激素 (EGF) 所引起的KSR位置轉移會因為RACK1表現的抑制而受到干擾。綜合這些結果,我們認為RACK1可能具有協助KSR在細胞中進行位置轉移的作用,並且因此調控細胞的生長與分裂。 | zh_TW |
| dc.description.abstract | In this study, functional KSR (Kinase Suppressor of Ras) complex was isolated from zebrafish embryos at cleavage stage. During the process of KSR purification, we found that there may be an interaction between RACK1 (Receptor for Activated C Kinase 1) and KSR. It was demonstrated that RACK1 is a member of functional KSR complex by immunoprecipitation of KSR. To study the interaction between KSR and RACK1, E. coli expressed recombinant RACK1 was used and the recombinant 14-3-3β was used for parallel study. Both E. coli expressed KSR and the purified zebrafish KSR were subjected to affinity chromatography using RACK1 or 14-3-3β affinity column. We found that E. coli expressed recombinant KSR did not interact with RACK1 or 14-3-3β affinity column, while the purified zebrafish KSR did. The purified zebrafish KSR was incubated with RACK1 and we found that the binding of RACK1 on KSR disturbed the interaction of KSR with 14-3-3β affinity column. It suggests that RACK1 may be a protein related to the translocation of KSR. To elucidate the role of RACK1 in translocation of KSR, a mouse cell line, BALB/3T3, was used to study. Using the immunoprecipitation of KSR, we found that RACK1 interacted with KSR only in cells cultured with 10% FBS but not in cells starved in serum-free medium for 24 hours. During the immunoprecipitation study, we found that the interaction between RACK1 and KSR is phosphate dependent in zebrafish and this interaction is partly phosphate-dependent and partly phosphate-independent in BALB/3T3 cells. Mouse RACK1 siRNA was used to downregulate the expression of RACK1 in BALB/3T3 cells and the expression of RACK1 was about half of the normal amount after 72 hours. We found that the EGF-induced translocation of KSR was suppressed in RACK1 downregulated cells. Altogether the data, RACK1 may be a protein to facilitate the translocation of KSR and it suggests that RACK1 has a role in regulating cell growth and proliferation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T16:26:39Z (GMT). No. of bitstreams: 1 ntu-94-R92b41015-1.pdf: 1600727 bytes, checksum: ade5bd1d864e89d972a19388f938af84 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | Contents
Abstract…………………………………………………………………………... 1 Introduction……………………………………………………………………... 3 ERK/ MAPK pathway………………………………………………………….. 3 Scaffolding proteins…………………………………………………………….. 3 Kinase Suppressor of Ras (KSR)……………………………………………….. 4 The translocation of KSR………………………………………………………. 6 14-3-3 proteins………………………………………………………………….. 6 Receptor for Activated C Kinase 1 (RACK1)………………………………….. 7 Materials and Reagents………………………………………………………. 10 Bio-materials……………………………………………………………………. 10 Materials………………………………………………………………………… 10 Instruments……………………………………………………………………… 10 Reagents………………………………………………………………………… 11 Primers………………………………………………………………………….. 15 E. coli competent cells………………………………………………………….. 15 Methods…………………………………………………………………………... 17 Cell culture……………………………………………………………………… 17 RNA extraction and the first strand cDNA Synthesis…………………………... 17 Polymerase Chain Reaction (PCR) for mouse ksr amplification……………….. 17 Agarose gel electrophoresis and ethidium bromide (EtBr) staining……………. 18 Gel extraction of DNA fragments………………………………………………. 18 Directional TA cloning and Transformation……………………………………. 19 Plasmids extraction……………………………………………………………... 19 Restriction Enzyme digestion…………………………………………………... 20 DNA Ligation…………………………………………………………………... 20 Construction of KSR expression plasmid for E. coli expression……………….. 20 Construction of nLumio-KSR Fusion protein expression plasmid for mammalian cell expression…………………………………………………. 21 Transfection……………………………………………………………………... 21 Mouse RACK1 siRNA synthesis and the downregulation of RACK1…………. 22 Subcellular fractionation………………………………………………………... 22 Fluorescence microscopy……………………………………………………….. 23 Purification of KSR from Zebrafish embryos…………………………………... 23 Immunoprecipitation of KSR complex from zebrafish embryos and cells……... 25 Production of mouse RACK1-encoded, 14-3-3β-encoded and KSR-encoded fusion proteins in bacteria…………………………………………………... 26 Preparation and using of HiTrap-PEPTaxol, RACK1 and 14-3-3β affinity columns……………………………………………………………………... 27 Using of HiTrap chelating affinity column……………………………………... 28 Sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE)…… 28 Western immunoblotting……………………………………………………….. 29 Silver-staining…………………………………………………………………... 29 Quantitation of protein………………………………………………………….. 30 Results…………………………………………………………………………….. 31 KSR was isolated from zebrafish embryos. ……………………………………. 31 Zebrafish KSR was further purified by HiTrap-PEPTaxol affinity column and HiTrap-14-3-3β affinity column and RACK1 is a member of zebrafish KSR complex……………………………………………….......................... 31 Mouse ksr was cloned for E. coli expression…………………………………… 33 E. coli expressed KSR did not interact with recombinant RACK1 or recombinant 14-3-3β, while purified zebrafish KSR did.…………………... 33 Recombinant RACK1 interacted with zebrafish KSR and disturbed the interaction between zebrafish KSR and recombinant 14-3-3β……………... 34 KSR only interacted with RACK1 in serum stimulated BALB/3T3 cells but not in starved cells……………………………………………………………… 35 The expression of RACK1 in BALB/3T3 cells was downregulated by RACK1 siRNA. ……………………………………………………………………… 35 The amount of KSR in the membrane fractions was induced by EGF stimulation and the EGF induction was interfered by RACK1 downregulation in BALB/3T3 cells………………………………………… 36 The Lumio reagent is not applicable in labeling the location of KSR overexpressed in BALB/3T3 cells………………………………………….. 36 Discussion................................................................................................................ 38 Summary…………………………………………………………………………. 44 References………………………………………………………………………... 45 Figures……………………………………………………………………………. 55 Supplementary depiction……………………………………………………... 85 | |
| dc.language.iso | en | |
| dc.subject | RACK1 | zh_TW |
| dc.subject | KSR | zh_TW |
| dc.title | RACK1與KSR的交互作用與其細胞生理意義之研究 | zh_TW |
| dc.title | The functional role of RACK1 in the molecular translocation of KSR in cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳俊宏(Jiun-Hong Chen),李心予(Hsinyu Lee),潘建源(Chien-Yuan Pan),黃偉邦(Wei-Pang Huang) | |
| dc.subject.keyword | RACK1,KSR, | zh_TW |
| dc.relation.page | 86 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-15 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 動物學研究研究所 | zh_TW |
| 顯示於系所單位: | 動物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 1.56 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
