請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38117完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 朱樺 | |
| dc.contributor.author | Ching-An Chen | en |
| dc.contributor.author | 陳清安 | zh_TW |
| dc.date.accessioned | 2021-06-13T16:26:37Z | - |
| dc.date.available | 2005-07-22 | |
| dc.date.copyright | 2005-07-22 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-15 | |
| dc.identifier.citation | [1] Bass, H, On the ubiquity of Gorenstein rings, Math.Z.82(1963) PP.8-28.
[2] Chen P.J. ,Zero-dimensional Gorenstein Rings, Master Degree Thesis,Depactineut of Mathematics. National Taiwan University, 2002. [3]Chu Huah. Zero-dimensional Gorenstein Rings. Prcprint. [4]Eisenbud, D, Commutative Algebra with a View Toward Algebra Geometry, GTM. 150, Spring-Verlag, 1994. [5]Gorenstein, D, An arithmetic theory of adjoint place curves. Trans. Amer. Math. Soc. 72(1952) pp.414-436. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38117 | - |
| dc.description.abstract | 在這篇論文裡,我們討論了兩個關於Gorenstein Ideals的問題:在第2節裡,我們找出了
(x_{1}^{n},x_{2}^{n},...,x_{s}^{n},y_{1}^{n},...,y_{t}^{n}): x_{1}^{alpha_{1}}x_{2}^{alpha_{2}}cdots x_{s}^{alpha_{s}} y_{1}^{ eta_{1}}y_{2}^{ eta_{2}}... y_{t}^{ eta_{t}}(x_{1}^{gamma_{1}} x_{2}^{gamma_{2}}cdots x_{s}^{gamma_{s}}-y_{1}^{delta_{1}} y_{2}^{delta_{2}}cdots y_{t}^{delta_{t}}) 的所有生成元。在第3節,我們解決了(x^{n},y^{n},z^{n}):x+y+z 的生成個數。 在第3節的證明中我們需要證明一個在二項式係數下的矩陣是非奇異的。在第4節中, 我們解決了這個問題。 | zh_TW |
| dc.description.abstract | In this paper, we solve two problem of Gorenstein Ideals :In section 2,
we find the generators of the ideal ((x_{1}^{n},x_{2}^{n},...,x_{s}^{n},y_{1}^{n},...,y_{t}^{n}): x_{1}^{alpha_{1}}x_{2}^{alpha_{2}}cdots x_{s}^{alpha_{s}} y_{1}^{ eta_{1}}y_{2}^{ eta_{2}}... y_{t}^{ eta_{t}}(x_{1}^{gamma_{1}} x_{2}^{gamma_{2}}... x_{s}^{gamma_{s}}-y_{1}^{delta_{1}} y_{2}^{delta_{2}}... y_{t}^{delta_{t}})). In section 3, we find the number of generators of ((x^{n},y^{n},z^{n}):x+y+z). In the proof of section 3, we need to show that a matrix on binomial coefficients is nonsigular. We solve this problem in section 4. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T16:26:37Z (GMT). No. of bitstreams: 1 ntu-94-R91221019-1.pdf: 272835 bytes, checksum: 8efe28e048d5707b04c7a9e1d3efff68 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | Section 1...............................1
Section 2:4.............................2 Section 3:15............................3 Section 4:22............................4 Section 5:27............................5 References29 | |
| dc.language.iso | en | |
| dc.subject | 高倫施坦 | zh_TW |
| dc.subject | Gorenstein | en |
| dc.title | 零維 Gorenstein 理想 | zh_TW |
| dc.title | ZERO − DIMENSIONAL GORENSTEIN IDEALS | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳永秋,洪有情,胡守仁 | |
| dc.subject.keyword | 高倫施坦, | zh_TW |
| dc.subject.keyword | Gorenstein, | en |
| dc.relation.page | 29 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-15 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 數學研究所 | zh_TW |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 266.44 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
