請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38116
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 余政靖 | |
dc.contributor.author | Xiu-Gong Shen | en |
dc.contributor.author | 沈修功 | zh_TW |
dc.date.accessioned | 2021-06-13T16:26:36Z | - |
dc.date.available | 2005-07-21 | |
dc.date.copyright | 2005-07-21 | |
dc.date.issued | 2005 | |
dc.date.submitted | 2005-07-15 | |
dc.identifier.citation | [1] Al-Arfaj, M. A.; Luyben, W. L. “Comparison of alternative control structures for an ideal two-product reactive distillation column.” Ind. Eng. Chem. Res., 2000, 39, 3298-3307.
[2] Al-Arfaj, M. A.; Luyben, W. L. “Effect of Number of Fractionating Trays on Reactive Distillation Performance.” AIChE J., 46, 2417 (2000). [3] Al-Arfaj, M. A.; Luyben, W. L. “Comparative control study of ideal and methyl acetate reactive distillation.” Chem. Eng. Sci., 2002, 57, 5039-5050. [4] Al-Arfaj, M. A.; Luyben, W. L. “Plantwide control of TAME production using reactive distillation.” AIChE J., 2004, 50, 1462-1473. [5] Beckmann, A.; Reusch, D.; Dussel, R.; Weidlich, U.; Janowsky, R. “Reactive distillation-industrial applications, process design and scale-up.” Chem. Eng. Sci. 2001, 56, 2, 387-394 [6] Chemical Engineering, 112,78, (2005). [7] Chang, D. M.; Yu, C. C.; I. L. Chien “Coordinated Control of Blending Systems”, IEEE Trans. Control Syst. Tech. 1998, 6, 495-506. [8] Cheng, Y. C.; Yu, C. C. “Optimal Region for Design and Control of Ternary Systems”, AIChE J. 2003, 49, 682-705. [9] Cheng, Y. C.; Yu, C. C. “Effects of Feed Tray Locations to the Design of Reactive Distillation and Its Implication to Control”, Chem. Eng. Sci. 2005 , 60, 4661-4677(accepted). [10] Chiang, S. F.; Kuo, C. L.; Yu, C. C.; Wong, D. S. H. “Design Alternatives for Amyl Acetate Process: Coupled Reactor/Column and Reactive Distillation”, Ind. Eng. Chem. Res. 2002, 41, 3233-3246. [11] Chiang, S. F.; Kuo, C. L.; Yu, C. C.; Wong, D. S. H. “Design Alternatives for Amyl Acetate Process: Coupled Reactor/Column and Reactive Distillation”, Ind. Eng. Chem. Res., 2002, 41, 3233-3246 [12] Devia, N.; Luyben, W. L. Reactors: size versus stability. Hydrocarbon Processing, 1978, 57, 6, 119-122 [13] Doherty, M. F.; Buzad, G. Reactive distillation by design. Trans. Inst. Chem. Eng., Part A 1992, 70, 448-458. [14] Doherty, M. F.; Malone, M. F. Conceptual Design of Distillation Systems; McGraw-Hill: New York, 2001. [15] Douglas, J. M. Conceptual Process Design; McGraw-Hill: New York, 1988. [16] Doukas, N.; Luyben, W. L. “Control of sidestream columns separating ternary mixtures.” In. Tech. 1976, 25(6), 43-48. [17] Hernjak N., and F.J. Doyle III, “Correlation of Process Nonlinearity with Closed-Loop Disturbance Rejection,” Ind. Eng. Chem. Res., 2003, 42, 4611 [18] Hoffmann, Achim; Noeres, Christoph; Gorak, Andrzej “sacle-up reactive distillation columns with catalytic packings” Chem. Eng. Processing, v 43, n 3, March, 2004, p 383-395 [19] Huang, S. G.; Kuo, C. L.; Hung, S. B.; Chen, Y. W.; Yu, C. C. “Temperature Control of Heterogeneous Reactive Distillation: Butyl Propionate and Butyl Acetate Esterification”, AIChE J. 2004, 50, 2203-2216. [20] Huang, S. G.; Yu, C. C. “Sensitivity of Thermodynamic Parameter to the Design of Heterogeneous Reactive Distillation: Amyl Acetate Esterification”, J. Chin. Inst. Chem. Eng. 2003, 34, 345-355.] [21] Kaymak, D. B.; Luyben, W. L. “Effect of relative volatility on the quantitative comparison of reactive distillation and conventional multi-unit systems.” Ind. Eng. Chem. Res. 2004, 43, 12, 3151-3162 [22] Kaymak, D. B.; Luyben, W. L. “Effect of the chemical equilibrium constant on the design of reactive distillation columns.” Ind. Eng. Chem. Res. 2004, 43, 14, 3666-3671 [23] Kaymak, D. B.; Luyben, W. L. A “Quantitative Comparison of Reactive Distillation with Conventional Multi-Unit Reactor/Column/Recycle Systems for Different Chemical Equilibrium Constants.” Ind. Eng. Chem. Res. 2004, 43, 2493-2507. [24] Kaymak, D. B.; Luyben, W. L.; Smith IV, O. J. “Effect of Relative Volatility on the Quantitative Comparison of Reactive Distillation and Conventional Multi-unit Systems.” Ind. Eng. Chem. Res., 2004, 43, 3151-3162. [25] Lin, M. T.; Yu, C. C.; Luyben, M. L. “Interpretation of Temperature Control for Ternary Distillation”, Ind. Eng. Chem. Research 2005 (submitted). [26] Luyben, W. L. “Economic and dynamic impact of the use of excess reactant in reactive distillation systems.” Ind. Eng. Chem. Res., 2000, 39, 2935–2946. [27] Luyben, W. L.; Tyreus, B. D.; Luyben, M. L. Plantwide Process Control; McGraw-Hill, New York (1999). [28] Menold P.H., F. Allgöwer., and R.K. Pearson., “Nonlinear Structure Identification of Chemical Processes,” Computers Chem. Eng., 21, S137 (1997). [29] Nierlich, F. ; Popken, T. ; Reusch, D. ; von Scala, C. ; Tuchlenski, A. “Industrial experience in the scale-up of reactive distillation with examples from C4-chemistry.” Chem. Eng. Sci, 2002, 57, 9, 1525-1530 [30] Noeres, C. ; Gorak, A. “Scale-up of reactive distillation columns with catalytic packings.” Chem. Eng. Processing, 2004, 43, 3, 383-395 [31] Schweickhardt, T., and F. Allgower, “Quantitative Nonlinearity Assessment: An Introduction to Nonlinearity Measure.” in Integration of Process Design and Control, Seferlis, P. and Georgiadis, M. C. Eds., Elsevier: Amsterdam (2004). [32] Sundmacher, K.; Kienle, A. Reactive Distillation; Wiley-VCH: Weinheim, Germany, 2003. [33] Sundmacher, K.; Qi, Z. “Conceptual design aspects of reactive distillation processes for ideal binary mixtures.” Chem. Eng. Processing, 2003, 42, 191-200. [34] Tang, Y. T.; Hung, S. B.; Chen, Y. W.; Huang, H. P.; Lee, M. J.; Yu, C. C. “Design of Reactive Distillations for Acetic Acid Esterification with Different Alcohols”, AIChE J. 2005, 51, 1683-1699. [35] Taylor, R.; Krishna, R. “Modelling Reactive Distillation.” Chem. Eng. Sci., 2000, 55, 5183-5229. [36] Tuchlenski, A.; Beckmann, A.; Reusch, D.; Düssel, R.; Weidlich, U.; Janowsky, R., “Reactive Distillation – Industrial Applications, Process Design and Scale-Up”, Chem. Eng. Sci., 56, 387 (2001). [37] Tyreus, B. D.; Luyben, W. L. “Tuning PI controllers for integrator/dead time processes.” Ind. Eng. Chem. Res., 1992, 31, 2625-2628. [38] Yu, C. C. Autotuning of PID Controllers: Relay Feedback Approach, Springer-Verlag: London (1999). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38116 | - |
dc.description.abstract | 製程放大是化工程序設計中重要的一環。傳統上反應器放大的原則是維持固定的滯留時間,而蒸餾塔的放大基本上維持板數不變來調整塔徑大小。而反應蒸餾塔結合了反應器與蒸餾塔的特性,而其放大的原則文獻上鮮少探討。本研究將探討反應蒸餾製程放大的基本原則,且進一步討論製程放大對程序動態及控制的影響。我們以理想反應蒸餾塔進行A+B=C+D反應為例,探討產能為0.45、4.5、45、450和4500(kmol/hr)最適設計的異同,來歸納製程放大的原則。在最適設計過程,我們調整反應板數、汽提及精餾板數及入料位置。但是當產能以10倍增加時,塔徑以101/2的速率增加,這暗示每板的可放置觸媒量以10倍速率增加。我們依此原則(相同的板數及入料位置)來放大反應蒸餾程序,結果顯示,直接放大設計和個別最適設計的年總成本最大誤差僅有5%。接下來我們探討控制結構直接放大的可能性。在此”控制結構直接放大”是以相同的操作變數在不同產能情況下控制相同的溫度量測板及產品組成。我們以基準產能(45kmol/h)為基礎來設計控制結構,再將此控制結構直接延伸到直接放大的設計中(如產能為0.45、4.5、450和4500 kmol/hr)。結果顯示,在所探討的三種控制架構中,除了控制器參數需重新調整外,控制架構可直接延伸到不同產能的設計。但是較大產能的反應蒸餾塔有著較慢的程序動態。最後我們探討反應蒸餾的非線性特性。在基準產能(45kmol/h)的設計,程序有著非常強的非線性(如:多重穩態、極小的線性範圍),接下來我們想了解此一特性是否會延伸到不同產品規格,不同反應動力表示法: (1)產品規程在高濃度(xD=0.99)、(2)中濃度(xD=0.95)和(3)中濃度(xD=0.95) 反應速率不為溫度的函數。結果顯示,溫度是一重要指標影,這影響了反應速率,造成迥異於一般蒸餾的效應而造成有增益異號的行為。這可由相同濃度(xD=0.95)的兩個系統,固定及隨溫度而變的反應速率常數非線性指標分析結果得到驗證。 | zh_TW |
dc.description.provenance | Made available in DSpace on 2021-06-13T16:26:36Z (GMT). No. of bitstreams: 1 ntu-94-R92524052-1.pdf: 2478528 bytes, checksum: 916e90ab70b02f881603a4d70f661161 (MD5) Previous issue date: 2005 | en |
dc.description.tableofcontents | 目錄
致謝 i 摘要 ii Abstract iv 目錄 vi 圖索引 ix 表索引 xiv 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 3 1-4 組織章節 4 第二章 穩態設計 5 2-1 理想反應蒸餾描述 5 2-1-1 動力式描述 5 2-1-1 熱力學描述 6 2-2 程序描述 7 2-3 穩態設計之假設 8 2-4 穩態設計之最適化步驟 8 2-5 最適化結果 10 2-6 固定設計條件的結果 16 2-7 兩種不同設計結果之討論 20 2-7-1 年總成本(TAC)之比較 20 2-7-2 穩態結果討論 20 第三章 動態控制模擬 23 3-1控制程序探討 23 3-2 控制架構探討 24 3-2-1 控制架構 I(CS1)兩組成控制 24 3-2-1-1靈敏度測試分析 25 3-2-1-2 非方形相對增益 27 3-2-1-3 控制係統架構 30 3-2-1-4 控制參數調協 31 3-2-1-5 動態模擬結果 32 3-2-2 控制架構 II(CS2)塔頂組成控制 35 3-2-2-1 動態模擬結果 36 3-2-2-2 控制架構 II架構修正(CS2m) 38 3-2-3 控制架構 III(CS3)塔底組成控制 40 3-2-3-1 控制架構III的非線性情況 41 3-2-3-2 動態模擬結果 42 3-2-3-3 控制架構III架構修正(CS3m) 44 3-3 延伸控制架構 47 3-3-1 超低產能系統 47 3-3-1-1 控制架構 I(CS1) 47 3-3-1-2 控制架構 II(CS2) 50 3-3-1-3 控制架構III(CS3) 52 3-3-2 低產能系統 54 3-3-2-1 控制架構 I(CS1) 54 3-3-2-2 控制架構 II(CS2) 56 3-3-2-3 控制架構III(CS3) 58 3-3-3 高產能系統 60 3-3-3-1 控制架構 I(CS1) 60 3-3-3-2 控制架構 II(CS2) 62 3-3-3-3 控制架構III(CS3) 64 3-3-4 最高產能系統 66 3-3-4-1 控制架構 I(CS1) 66 3-3-4-2 控制架構 II(CS2) 68 3-3-4-3 控制架構III(CS3) 70 3-4不同產能間的比較 72 3-4-1 控制架構 I 72 3-4-2 控制架構 II 74 3-4-3 控制架構III 75 3-5 入料位置對於動態影響 77 3-5-1 穩態的能源節省 77 3-5-2 入料變動之控制架構(控制架構 IV(CS4)) 78 3-5-3 入料變動之控制架構(CS4)的動態結果 79 3-5-4不同產能之動態結果(控制架構 IV) 80 第四章 程序非線性 85 4-1 程序探討 85 4-2 穩態非線性分析 86 4-2-1 高純度(xD=0.99)且反應速率常數為溫度函數 87 4-2-2中純度(xD=0.95)且反應速率常數為溫度函數 88 4-2-3中純度(xD=0.95)且反應速率常數不為溫度函數 90 4-2-4 非線性強度比較與討論 91 4-3 控制架構分析 93 4-3-1高純度(xD=0.99)且反應速率常數為溫度函數 93 4-3-2中純度(xD=0.95)且反應速率常數為溫度函數 94 4-3-2-1 靈敏度分析與控制配對 94 4-3-2-2 控制架構 I 96 4-3-2-3 控制架構 II 98 4-3-2-4 控制架構III 99 4-3-3 中純度(xD=0.95),反應速率常數不為溫度函數 101 4-3-3-1 靈敏度分析與控制配對 101 4-3-2-2 控制架構 I,動態結果 104 4-3-2-3 控制架構 II,動態結果 105 4-3-2-4 控制架構III,動態結果 107 4-4 非線性分析結果討論 108 第五章 結論 110 參考文獻 112 附錄A TAC計算公式 116 作者簡介 118 | |
dc.language.iso | zh-TW | |
dc.title | 反應蒸餾系統的製程放大 | zh_TW |
dc.title | Scale-up of an ideal reactive distillation process | en |
dc.type | Thesis | |
dc.date.schoolyear | 93-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳誠亮,黃琦聰,黃奇,汪上曉 | |
dc.subject.keyword | 反應蒸餾,製程放大, | zh_TW |
dc.subject.keyword | scale-up,reactive distillation, | en |
dc.relation.page | 118 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2005-07-15 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-94-1.pdf 目前未授權公開取用 | 2.42 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。