Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 流行病學與預防醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38075
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳秀熙
dc.contributor.authorYa-Min Yangen
dc.contributor.author楊雅閔zh_TW
dc.date.accessioned2021-06-13T16:26:10Z-
dc.date.available2006-08-03
dc.date.copyright2005-08-03
dc.date.issued2005
dc.date.submitted2005-07-16
dc.identifier.citationAnderson, R. M. and R. M. May (1991). Infectious diseases of humans-dynamics and control, Oxford university press.
Aron, J. L., M. O'Leary, et al. (2002). 'The benefits of a notification process in addressing the worsening computer virus problem: Results of a survey and a simulation model.' computers & Security 21(2): 142-163.
Bhagyavati, N. Rogers, et al. (2004). Email filters can adversely affect free and open flow of communication. ACM International Conference Proceeding Series
Proceedings of the winter international synposium on Information and communication technologies. Cancun, Mexico, Trinity College Dublin: 1-6.
Bhavnani, S. (2000). 'Protection your networks from intrusion.' Digital systams report 22(1): 27-28.
Highland, H. J. (1997). 'Procedures To Reduce The Computer Virus Threat.' Computers & Security 16(5): 439-449.
Jan, E. (2004). Virus damage estimated at $55 billion in 2003. Technology & Science. Singapore, MSNBC News.
Jones, A. R. (1992). Development and delivery of a computer security strategy for a community of end users. User Services Conference
Proceedings of the 20th annual ACM SIGUCCS conference on User services. Cleveland, Ohio, United States, ACM Press: 125-128.
Kienzle, D. M. and M. C. Elder (2003). Recent worms: a survey and trends. Workshop On Rapid Malcode
Proceedings of the 2003 ACM workshop on Rapid Malcode. Washington, DC, USA, ACM Press: 1 - 10.
Post, G. and A. Kagan (1998). 'The Use and Effectiveness of Anti-Virus Software.' Computers & Security 17(7): 589-599.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38075-
dc.description.abstract當電腦病毒感染正在全球盛行時,要降低流行性的傳染對電腦使用者是件刻不容緩的事情。而安裝防毒軟體和購買軟體的升級則必須考慮到所花的錢和時間。為了降低電腦中毒所得到的效益是否比購買防毒軟體所花的錢重要是件值得探討的問題。
就我們的瞭解,非常少的研究學者使用Anderson (1991) 傳染病模式的概念進行研究此項議題。為了在馬可夫的模式中使用Anderson的觀念,我們必須獲得許多參數,同時將參數經過轉換,因此做了一個小規模的問卷調查,而將調查所得的經驗值或專家意見應用在馬可夫的決策模型中,以進行兩種不同情景的成本效益分析。分別是兩種決策安裝防毒軟體與否,以及三種決策:購買防毒軟體同時定期更新、購買防毒軟體但並無更新、以及沒有安裝防毒軟體。
使用馬可夫決策分析可以得到如下的結果:
若效益訂為所獲得減少損失的時間,則每一單位效益相當於5小時。如此,安裝防毒軟體可以獲得3.37單位效益(16.85個小時),而沒有安裝只能獲得1.36單位效益(6.8個小時)。裝防毒軟體且每年更新可以獲得3.52單位效益(17.6個小時),而在裝防毒軟體不每年更新的狀態下,僅僅能獲得3.29單位效益(16.45小時)而已。
從消費者觀點來看,裝了防毒軟體,每要減少一個感染發生症狀的人要花新台幣38,228元。若從社會成本的觀點來看,有裝防毒軟體會比沒裝防毒軟體來的便宜且效果較好。從消費者觀點來看,裝防毒軟體且每年更新,每要減少一個感染發生症狀的人只要花新台幣26,222元,但在裝防毒軟體不每年更新的狀態下,卻要花新台幣108,158.33元。
從社會成本的觀點來看,沒裝防毒軟體比上裝防毒軟體不每年更新,每要減少一個感染發生症狀的人要花新台幣9,504.55元。從社會成本的觀點來看,若效益所獲得減少損失的時間,則每獲得5小時,防毒軟體需花費1,029元新台幣;且有裝防毒軟體比沒裝好。從消費者觀點來看,裝防毒軟體且每年更新,每獲得5小時,要花新台幣9,363元,但在裝防毒軟體不每年更新的狀態下,只要花674元。從社會成本的觀點來看,裝防毒軟體且每年更新,每獲得5小時,要花新台幣8,328元,且這個策略是較好的。
在這個研究中,裝防毒軟體且每年更新,是最有效益的策略。而安裝防毒軟體則是在預防電腦中毒上最具成本效益的策略。而我們終於成功的利用傳染病模式,發展出一個馬可夫決策模式來評估安裝防毒軟體(打疫苗)、 或購買更新的防毒軟體(追加劑)的效益或成本效益。這個模型對決定購買防毒軟體或更新的決策者是非常有用的。
zh_TW
dc.description.abstractAs computer virus infection prevails in the globe, to reduce pandemic transmission is of paramount importance to burden of computer users. And the installation of antivirus software (AVS) and the update of this software need considerable costs and time. Whether the benefit of reducing infection can outweigh cost incurred in purchasing AVS is worthy of being investigated.
To our knowledge, very few researches have been conducted to address this issue using the concept of infectious model as proposed by Anderson (1991). For applying the concept on Markov decision tree, we must get many parameters and do transformation, so we conducted a small questionnaire survey, then we applied Markov decision tree model to develop natural course of computer virus infection based on information obtained form empirical survey or expert opinion to perform cost-effectiveness analysis of comparing two decisions, AVS versus none, and three decisions, purchasing AVS updated at regular interval, purchasing AVS without updating, and none.
The present study used Markov decision analysis to analyze the effectiveness and cost-effectiveness analysis for prevention of computer virus infection. For effectiveness defined by reducing loss of time using 5 hr as a unit, strategy “AVS” can gain 3.37 unit utilities (16.85 hrs) in the model, but strategy “none” can only just gain 1.36 unit utilities (6.8 hrs). Strategy “Purchasing update AVS every year” can gain 3.52 unit utilities (17.6 hrs) in the model, but strategy “No purchasing update AVS every year” can merely gain 3.29 unit utilities (16.45 hrs).
For incremental cost per infected with symptoms averted, to prevent an infected with symptom, NT$38,228 would be paid in strategy “AVS” from consumer’s viewpoint. From societal viewpoint, strategy “AVS” would dominate over “none”. From consumer’s viewpoint, to prevent an infection with symptom, NT$26,222 would be paid in strategy “purchasing update AVS every year”, but NT$108,158.33 in “not purchasing update AVS every year”.
From societal viewpoint, to prevent an infection with symptom, NT$9504.55 would be paid in strategy “none”. If effectiveness is defined by utility gained in reducing loss of time, to gain 5 hrs, NT$1,029 would be paid in strategy “AVS” from consumer’s viewpoint. From societal viewpoint, strategy “AVS” would dominate over “none”. From consumer’s viewpoint, to gain 5 hrs, NT$9,363 would be paid in strategy “Purchasing update AVS every year”, but NT$674 in “not purchasing update AVS every year”. From society viewpoint, to gain 5 hrs, NT$8,328 would be paid in strategy “Purchasing update AVS every year”, and “none” is dominated
In this analysis, purchasing update AVS every year would be most effective strategy in preventing computer virus infection. And AVS used would be most cost-effective strategy in preventing computer virus infection. And we finally successfully developed a Markov decision model underpinning the infectious disease model to evaluate effectiveness or cost-effectiveness of installing AVS (vaccination) or purchasing the updated AVS (booster). This model is very useful for policy-maker in the determination of whether AVS or regular update is necessary.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T16:26:10Z (GMT). No. of bitstreams: 1
ntu-94-R92846013-1.pdf: 1355284 bytes, checksum: c44470bff092f85e1232583b2f1529e1 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontentsCatalog
誌謝 II
Catalog III
Tables and Figures List IV
中文摘要 1
Abstract 3
II Literature Review 8
III Methods 11
Infectious disease model 11
Markov Cohort Analysis 12
Markov cycle tree 14
Structure of Decision Tree 14
Probabilities 17
Monte Carlo Simulation 17
Utility 19
Costs 20
Assumptions in the model 20
Measurements and outcome variables 21
Data analysis 21
IV Results 22
45 informants 22
4.1 Results of Empirical Survey 22
4.2 Base-case Estimates 24
4.3 Utility and Cost Measurement 26
4.4 Effectiveness and Cost-effectiveness Analysis 26
Markov Cohort Analysis 26
Monte Carlo Simulation 28
Cohort of 100,000 people 31
Sensitivity analysis 33
V Discussion 42
Major Findings 42
Concept of Infectious Model 44
Limitations of Study 44
Further research 47
VI References 49
VII Appendix 51
Tables and Figures List
Figure3. 1 Schematic representation of infectious disease 12
Figure3. 2 Decision tree of two preventive strategies. 13
Figure3. 3 Decision tree of three preventive strategies. 14
Figure3. 4 Markov model for longitudinal sequence regarding computer virus infection. 16
Figure4.1. 1 Descriptive data about questionnaire 53
Table 4.2. 2 Figure 4.2. 1 Branches and probabilities of state susceptible 59
Table 4.2. 3 Figure 4.2. 2 Branches and probabilities of state infected with symptoms 60
Table 4.2. 4 Figure 4.2. 3 Branches and probabilities of node boot failure 61
Table 4.2. 5 Figure 4.2. 4 Branches and probabilities of node non CPU and/or MB failure 62
Table 4.2. 6 Figure 4.2. 5 Branches and probabilities of node CPU and/or MB failure 63
Table 4.2. 7 Figure 4.2. 6 Branches and probabilities of node boot successful 64
Table 4.2. 8 Figure 4.2. 7 Branches and probabilities of node OS failure 65
Table 4.2. 9 Figure 4.2. 8 Branches and probabilities of node OS normal 66
Table 4.2. 10 Figure 4.2. 9 Branches and probabilities of node none 67
Table 4.3. 1 Raw data of utility 68
Table 4.3. 2 Utility 72
Table 4.3. 3 Cost 76
Table 4.4.1 Results of effectiveness in terms of infection with symptoms prevented 77
Table 4.4.2 Incremental cost per infected with symptoms averted 78
Table 4.4.3 Incremental cost per infected with symptoms averted 79
Table 4.4.4 Cost-effectiveness analysis 80
Table 4.4.5 Cost-effectiveness analysis 81
Table 4.4.6 RR of effectiveness using Monte Carlo simulation 82
Table 4.4.7 Incremental cost-effectiveness ratio (effectiveness is defined by infection with symptoms averted) using Monte Carlo simulation 83
Table 4.4.8 Incremental cost-effectiveness ratio using Monte Carlo simulation 84
Table 4.4.9 Incremental cost-effectiveness ratio for two strategies, using Monte Carlo simulation 85
Table 4.4.10 Incremental cost-effectiveness ratio for three strategies using Monte Carlo simulation 86
Table 4.4.11 Results of total effectiveness for cohorts with the size of 100,000 people by two and three strategies 87
Table 4.4.12 Results of total effectiveness of cohort with the size of 100,000 people by two and three strategies 88
Table 4.4.13 Results of total effectiveness, total cost and average cost-effectiveness ratio for the cohort 89
Table 4.4.14 Results of total effectiveness, total cost and average cost-effectiveness ratio for the cohort 90
Table 4.4.15 Results of total effectiveness, total cost and average cost-effectiveness ratio for the cohort 91
Table 4.4.16 The results of total effectiveness, total cost and average cost-effectiveness ratio for cohort 92
Figure4.4.1 Sensitivity analysis of ICER between 2 strategies, direct cost is considered 93
Figure4.4. 2 Sensitivity analysis of incremental effectiveness between 2 strategies 94
Figure4.4. 3 Sensitivity analysis of ICER between 2 strategies, direct cost is considered 95
Figure4.4. 4 Sensitivity analysis of incremental effectiveness between 2 strategies, effectiveness is gain of loss of time 96
Figure4.4. 5 Sensitivity analysis of ICER between 2 strategies, indirect cost is considered 97
Figure4.4. 6 Sensitivity analysis of ICER between 2 strategies, indirect cost is considered 98
Figure4.4. 7 Sensitivity analysis of ICER between 3 strategies, no purchasing vs. none, direct cost is considered 99
Figure4.4. 8 Sensitivity analysis of ICER between 3 strategies, purchasing vs. none, direct cost is considered 100
Figure4.4. 9 Sensitivity analysis of incremental effectiveness between 3 strategies, no purchasing vs. none 101
Figure4.4. 10 Sensitivity analysis of incremental effectiveness between 3 strategies, purchasing vs. none 102
Figure4.4. 11 Sensitivity analysis of ICER between 3 strategies, none vs. no purchasing, indirect cost is considered 103
Figure4.4. 12 Sensitivity analysis of ICER between 3 strategies, purchasing vs. no purchasing, indirect cost is considered 104
Figure4.4. 13 Sensitivity analysis of incremental effectiveness between 3 strategies, none vs. no purchasing 105
Figure4.4. 14 Sensitivity analysis of incremental effectiveness between 3 strategies, purchasing vs. no purchasing 106
Figure4.4. 15 Sensitivity analysis of ICER between 3 strategies, no purchasing vs. none, direct cost is considered 107
Figure4.4. 16 Sensitivity analysis of ICER between 3 strategies, purchasing vs. none, direct cost is considered 108
Figure4.4. 17 Sensitivity analysis of incremental effectiveness between 3 strategies, no purchasing vs. none 109
Figure4.4. 18 Sensitivity analysis of incremental effectiveness between 3 strategies, purchasing vs. none 110
Figure4.4. 19 Sensitivity analysis of ICER between 3 strategies, none vs. no purchasing, indirect cost is considered 111
Figure4.4. 20 Sensitivity analysis of ICER between 3 strategies, purchasing vs. no purchasing, indirect cost is considered 112
Figure4.4. 21 Sensitivity analysis of incremental effectiveness between 3 strategies, none vs. no purchasing 113
Figure4.4. 22 Sensitivity analysis of incremental effectiveness between 3 strategies, purchasing vs. no purchasing 114
dc.language.isoen
dc.subject成本效益分析zh_TW
dc.subject馬可夫決策分析zh_TW
dc.subject傳染病模式zh_TW
dc.subject裝防毒軟體且每年更新zh_TW
dc.subject防毒軟體zh_TW
dc.subjectinfectious modelen
dc.subjectAVSen
dc.subjectcost-effectiveness analysisen
dc.subjectMarkov decision analysisen
dc.subjectpurchasing update AVS every yearen
dc.title預防電腦中毒成本效益分析zh_TW
dc.titleCost-effectiveness analysis of Preventing Computer Virus Infectionen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.coadvisor陳俊維
dc.contributor.oralexamcommittee吳肖琪,葉彥伯
dc.subject.keyword防毒軟體,成本效益分析,馬可夫決策分析,傳染病模式,裝防毒軟體且每年更新,zh_TW
dc.subject.keywordAVS,cost-effectiveness analysis,Markov decision analysis,infectious model,purchasing update AVS every year,en
dc.relation.page114
dc.rights.note有償授權
dc.date.accepted2005-07-19
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept預防醫學研究所zh_TW
顯示於系所單位:流行病學與預防醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
1.32 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved