Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 海洋研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38068
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor唐存勇(Tswen Yung Tang)
dc.contributor.authorMing-Huei Changen
dc.contributor.author張明輝zh_TW
dc.date.accessioned2021-06-13T15:59:51Z-
dc.date.available2008-05-02
dc.date.copyright2008-05-02
dc.date.issued2008
dc.date.submitted2008-04-28
dc.identifier.citationAlpers, W., 1985: Theory of radar imaging of internal waves. Nature, 314, 245–247.
Apel, J. R., (2002) Oceanic internal waves and solitons, An Atlas of Internal Waves, Global Ocean Associates.
Apel, J. R. (2003), A new analytical model for internal solitons in the oceans, J. Phys. Oceanogr., 33, 2247-2269.
Apel, J. R., J. R. Holbrook, A. K. Liu (1985), The Sulu Sea internal solution experiment, J. Phys. Oceangr., 15(12): 1625 -1651.
Apel, J. R., M. Badiey, C.-S. Chiu, S. Finette, R. Headrick, J. Kemp, J. F. Lynch, A. Newhall, M. H. Orr, B. H. Pasewark, D. Tielbuerger, A. Turgut, K. von der Heydt, and S. Wolf (1997), An overview of the 1995 SWARM shallow-water internal wave acoustic scattering experiment, IEEE J. Oceanic Eng., vol. 22, p. 465–500.
Benny, D. J. (1966), Long non-linear waves in fluid flows. J. Math. Phys., 45, 52–63.
Bogucki, D., T. D. Dickey and L. G. Redekopp (1997), Sediment resuspension and mixing by resonantly generated internal solitary waves. J. Phys. Oceangr., 27: 1181-1196.
Bole J. B., C. C. Ebbesmeyer, and R. D. Romea (1994), Soliton currents in the South China Sea: measurements and theoretical modeling, in Proc. 26th Annual Offshore Technology Conf., Houston, TX, 1994, p. 367–376.
Brandt, P., W. Alpers, and J.O. Backhaus (1996), Study of the generation and propagation of internal waves in the Strait of Gibraltar using a numerical model and radar images from the European ERS-1 satellite. J. Geophys. Res. 101, p. 14237–14252.
Cushman-Roisin, B. (1994), Introduction to Geophysical Fluid Dynamics, Prentice-Hall, 320 pp.
Chang, M.-H., R.-C. Lien, T. Y. Tang, E. A. D’Asaro, and Y. J. Yang (2006), Energy flux of nonlinear internal waves in northern South China Sea, Geophys. Res. Lett., 33, L03607, doi:10.1029/2005GL025196.
Dankert, H. (2003), Measurement of Waves, Wave Groups, and Wind Fields using Nautical Radar-Image Sequences, Dissertation, University of Hamburg, Department of Earth Sciences.
Dankert, H., J. Horstmann, and W. Rosenthal (2005), Wind and Wave Field Measurements using Marine X-Band Radar-Image Sequences, IEEE Journal of Oceanic Engineering - Special Issue, Vol. 30, Iss. 3, doi:10.1109/JOE.2005.857524, 534-542.
Djordjevic, V. D. and Redekopp, L. G. (1978), The fission and disintegration of internal waves moving over two-dimensional topography. J. Phys Oceanogr. 8, 1016-1090.
Duda, T. D., Lync, J. F., Irish, J.D. (2004), Internal tide and nonlinear internal wave behavior at the continental slope in the Northern South China Sea. IEEE J. Ocean. Tech. 29, 1105–1130.
Ebbesmeyer, C. C., C. A. Coomes, and R. C. Hamilton (1991), New observations on internal waves (solitons) in the South China Sea using acoustic Doppler current profiler, 165– 175, in Marine Technology Society Proceedings, New Orleans.
Egbert, G. D. and R. D. Ray (2000), Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data, Nature, 405, 775-778.
Garrett C. and W. Munk (1972), Space–time scales of internal waves, Geophysical Fluid Dynamics 2, pp. 225–264.
Gill, A. E. (1982), Atmosphere-Ocean Dynamics. Academic Press, New York.
Helfrich, K. R. and W. K. Melville (1986), On the nonlinear intenral waves over slope-shelf topography, J. Fluid Mech., 167, 285–308.
Helfrich, K. R. and W. K. Melville (2006), Long nonlinear intenral waves. Ann. Rev. Fluid Mech., 38, 395–425.
Holloway P. E., E. Pelinovsky, T. Talipova, and B.A. Barnes (1997), A nonlinear model of internal tide transformation on the Australian North West Shelf. J. Phys. Ocean., 27, 871 - 896.
Hughes, B. A. (1978), The effect of internal waves on surface wind waves, 2. Theoretical analysis, J. Geophys. Res., 83, 455-465.
Hughes, B. A. and H. L. Grant (1978), The effect of internal waves on surface wind waves, 1. Experimental measurements, J. Geophys. Res., 83, 443-454.
Hughes, B. A. and J. F. R. Gower (1983), SAR imagery and surface truth comparisons of internal waves in Georgia Strait, British Columbia, Canada, J. Geophys. Res., 88, 1809-1824.
Hsu, M.-K., and A. K. Liu (2000), Nonlinear internal waves in the South China Sea, Can. J. Remote Sens., 26, 72– 81.
Kao, C.-C., L.-H. Lee, C.-C. Tai, and Y.-C. Wei (2007), Extracting the ocean surface feature on non-linear internal solitary waves in MODIS satellite images, paper presented at The Third International Conferences on Intelligent Information Hiding and Multimedia Signal Processing, pp. 27-32, Kaohsiung, Taiwan.
Korteweg D. J. and G. deVries (1985), On the change of form of long waves a dvancing in a rectangular canal and on a new type of long stationary waves, Phil. Mag., vol. 39, pp. 422–443.
Kropfli, R. A., L. A. Ostrovski, T. P. Stanton, E. A. Skirta, A. N. Keane, and V. Irisov, (1999), Relationships between strong internal waves in the coastal zone and their radar and radiometric signatures. J. Geophys. Res., 104, (C2), 3133–3148.
Kuperman W. and Lynch J. (2004), Shallow water acoustics, Physics Today, P. 55–61.
Lee, C.-Y. and R. C. Beardsley (1974), The generation of long nonlinear internal waves in a weakly stratified shear flow, J. Geophys. Res. 79, 453-462.
Lee P., J. Barter, K. Beach, C. Hindman, B. Lake, H. Rungaldier, J. Shelton, A. Williams, R. Lee, and H. Yuen (1995), X-band microwave backscattering from ocean waves, J. Geophys. Res., vol. 100, no. C2, 2591–2611.
Lee P., J. Barter, K. Beach, C. Hindman, B. Lake, H. Rungaldier, J. Shelton, A. Williams, R. Lee, and H. Yuen (1995), X-band microwave backscattering from ocean waves, J. Geophys. Res., vol. 100, no. C2, 2591–2611.
Lien, R.-C., T. Y. Tang, M. H. Chang, E. A. D’Asaro (2005), Energy of nonlinear internal waves in the South China Sea, Geophys. Res. Lett., 32, L05615, doi:10.1029/2004GL022012.
Lien, R.-C., and Müller, P. (1991), Consistency relations for gravity and vertical modes in the Ocean, Deep-Sea Research, v. 39, p. 1595-1612.
Liu, A.K., (1988), Analysis of nonlinear internal waves in the New York Bight. J. Geophys. Res. 93, p. 12317–12329.
Liu A. K., Y. S. Chang, M.-K. Hsu, and N. K. Liang (1998), Evolution of nonlinear internal waves in the East and South China Seas, J. Geophys. Res., vol. 103, no. 4, pp. 7995–8008.
Lynett, P. and Liu, P. L.-F. (2002), A two-dimensional, depth-integrated model for internal wave propagation, Wave Motion, 36, p. 221-240.
Lyzenga, D. R. (1998), Effects of intermediate-scale waves on radar signatures of ocean fronts and internal waves, J. Geophys. Res., 103, (C9), 18759–18768.
Mirshak, R. and Kelley, D.E. (2008), Inferring propagation direction of nonlinear internal waves in a vertically sheared background flow, submitted to Journal of Atmospheric and Oceanic Technology.
Moore, S.E., and R.-C. Lien (2007), Pilot whales follow internal solitary waves in the South China Sea, Mar. Mammal Sci., 23, 193-196.
Moum, J. N., J. M. Klymak, J. D. Nash, A. Perlin, and W. D. Smyth (2006), Energy Transport by Nonlinear InternalWaves, J. Phys. Oceangr., in press.
Moum, J. N. and W.D. Smyth (2006), The pressure disturbance of a nonlinear internal wave train, J. Fluid Mech, 558, 153-177.
Moum J.N., D.M. Farmer, E.L. Shroyer, W.D. Smyth and L. Armi (2007), Dissipative losses in nonlinear internal waves propagating across the continental shelf, J. Phys. Oceanogr., 37(7), 1989-1995.
Munk W. and C. Wunsch (1998), Abyssal recipes II: energetics of tidal and wind
mixing. Deep-Sea Research I 45, pp. 1977–2010.
Nash, J. D., M. H. Alford, and E. Kunze (2005), On estimating internal wave energy fluxes in the ocean. J. Atmos. Ocean. Tech., in press, 1–15.
Nash, J. D. and J.N. Moum (2005),River plumes as a source of large-amplitude internal waves in the coastal ocean, Nature, 437, 400-403.
Niwa, Y., and T. Hibiya (2004), Three-dimensional numerical simulation of M2 internal tides in the East China Sea, J. Geophys. Res., 109, C04027,doi:10.1029/2003JC001923.
Orr, M. H., and P. C. Mignerey (2003), Nonlinear internal waves in the South China Sea: Observation of the conversion of depression internal waves to elevation internal waves, J. Geophys. Res., 108(C3), 3064, doi:10.1029/2001JC001163.
Osborne A. R. and T. L. Burch (1980), Internal solitons in the Andaman Sea, Science, 1980, 208: 451-459.
Phillips, O. M. (1977), The Dynamics of the Upper Ocean. Cambridge, p. 207.
Ramp, R. S., T. Y. Tang, T. F. Duda, J. F. Lynch, A. K. Liu, C.-S. Chiu, F. Bahr, H.-R. Kim, and Y. J. Yang (2004), Internal solitons in the northeastern South China Sea Part I: Source and deep water propagation. IEEE J. Ocean. Eng., 29, 1157-1181.
Shroyer E.L., J.N. Moum, and J.D. Nash (2008), Observations of Polarity Reversal in Shoaling Nonlinear InternalWaves, submitted to J. Phys. Oceanogr.
Scotti A., R. Beardsley and B. Butman (2006), On the interpretation of energy and energy fluxes of nonlinear internal waves: an example from Massachusetts Bay, J. Fluid Mech., vol. 561, pp. 103–112
Scotti, A., Butman, R., Beardsley, R. C., Alexander, P. S. & Anderson, S. (2005), A modified beam-to-earth transformation to measure short-wavelength internal waves with an acoustic Doppler current profiler, J. Atmos. Ocean. Technol. 22, 583–591.
Small, J. (2001), A nonlinear model of the shoaling and refraction of interfacial solitary waves in the ocean. Part 1: Development of the model and investigations of the shoaling effect. J. Phys. Ocean. 31 11, pp. 3163–3183.
Smith, S. R., M. A. Bourassa, and R. J. Sharp (1998), Establishing more truth in true winds, J. Atmos. Oceanic Technol., 16, 939-952.
Thompson D. R. and R. F. Gasparovic (1986), Intensity modulation in SAR images of internal waves. Nature, 320, 345-348.
Trizna D. and D. Carlson (1996), Studies of dual polarized low grazing angle radar sea scatter in nearshore regions, IEEE Trans. Geosci. Remote Sens., vol. 34, no. 3, 747–757.
Vlasenko, V. and Hutter, K. (2002), Numerical experiments on the breaking of solitary internal waves over a slope-shelf topography. J. Phys. Oceanogr., 32(6): 1779-1793.
Vlasenko V. I., P. Brandt, and A. Rubino (2000), The structure of large-amplitude internal solitary waves. J. Phys. Oceanogr., 30, 2172–2185.
Wang, Y. -H., C. -F. Dai, and Y. -Y. Chen (2007), Physical and ecological processes of internal waves on an isolated reef ecosystem in the South China Sea, Geophys. Res. Lett., 34, L18609, doi:10.1029/2007GL030658.
Yang, Y.-J., T. Y. Tang, M. H. Chang, A. K. Liu, M.-K. Hsu, S. R. Ramp (2004), Solitons northeast of Tung-Sha Island during the ASIAEX pilot studies, IEEE, J. Ocean. Eng., 29, 1182-1199.
Zabusky N. J. and M. D. Kruskal (1965), Interaction of “solitons” in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett., vol. 15, no. 6, pp. 240–243.
Zhao Z. and M. H. Alford (2006), Source and Propagation of Internal Solitary Waves in the Northeastern South China Sea, J. Geophys. Res., 111(c11): C11012.
Zhao, Z., V. Klemas, Q. Zheng, and X.-H. Yan (2004), Remote sensing evidence for baroclinic tide origin of internal solitary waves in the northeastern South China Sea, Geophys. Res. Lett., 31, doi:10.1029/2003GL019077.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38068-
dc.description.abstract本論文主要在於研究南海巨大振幅內波,包括其行進的特性,能量、能量通量、消散,與非線性內波表面散射強度與其內部性質的關係。
首先使用三組置放於東沙海底高原的長期ADCP錨碇量測、並整合現場船測與遙測資料來研究非線性內波的行進特性,錨碇位於東沙海底高原東緣,並且沿著21o05’排列,由東而西,連續兩站相距分別為~8.5海浬與~17海浬。非線性內波引發的海流與兩站間波到達時間差分別用以計算波的行進方向與行進速度。研究結果顯示,平均行進方向為165 o,也就是維持西稍偏北的行進方向,於連續兩個站間的平均行進速度,由東而西分別為1.83±0.38 m/s 與1.61±0.20 m/s,以上行進速度與方向的估計可由船載海洋雷達與衛星影像所驗證。行進方向長期而言並無明顯之規則變化,但行進速度的長期變化顯示,於8-10月非線性內波的行進速度較快,而1-3月份行進速度較慢,與典型南海季節性分層:8-10月分層強烈,1-3月分層弱相符,使用氣候平均密度場計算第一斜壓模內波之線性相速度,其趨勢與上述結果吻合。行進方向與行進速度具有明顯日內變化,尤其在最大潮的前後數日期間內常可見兩種型態的非線性內波接續交互出現,兩種型態的波分別是行進速度較快、行進方向較偏西與進速度較慢、行進方向比前一型波稍偏北的波,推測應與呂宋海峽的潮流有關。
分析三組置放於北南海的ADCP錨碇量測,量測位置分別位於東沙海底高原、淺水大陸棚區與陡峭大陸斜坡。資料顯示,非線性內波主要為向西行進,不論是沿著或橫越非線性內波行進的路徑,非線性內波皆有強大的能量與能量通量輻散(divergence),在海底高原,非線性內波的能量通量為8.5 kWm-1,沿著行進路徑往西220公里遠的大陸棚區,則僅有0.25 kWm-1,橫越其行進路徑到其北向約120公里的大陸斜坡區,能量通量為1 kWm-1。沿著東沙海底高原上非線性內波行進的路徑,平均非線性內波能量通量輻散為~0.04 Wm-2,相當於O(10-7-10-6) Wkg-1的消散率(dissipation rate)。整合現有資料與先前的模式結果,可顯示出南海非線性內波能量通量的分佈態勢。非線性內波於東沙海底高原西邊產生,沿著以~21oN為中心寬約100公里的beam以主要向西的行進方向穿越海底高原,在到達大陸棚區域前,非線性內波幾乎消耗掉所有能量。
於弱東北風(風速~2 m/s)時期,本研究亦使用船載海洋雷達(Marine Radar)、都普勒流剖儀、溫鹽深儀、與EK500聲學回跡儀來同時觀測南海巨大振幅非線性內波的表面訊號與內部性質。當非線性內波未出現時,由海洋雷達量測得的海表面散射強度與當地風速有正相關,當非線性內波抵達時,於其海表面輻合區的散射強度被加強,估計非線性內波引發的海表面散射強度相當於6 m/s的風速所產生的海表面散射強度,也就是約真實風速的3倍強度。被增強的海表面散射強度之水平空間結構可用以預測非線性內波的水平空間結構,所觀測得的平均非線性內波半振幅寬度 為1.09±0.2 km,平均增強散射強度半振幅寬度 為~0.57 ,平均增強的非線性內波水平速度輻合半振幅寬度 相當於 ,被增強的海表面散射尖峰值約領先非線性內波中心點~0.46 。非線性內波水平速度輻合與海表面強化散射強度成正相關,非線性內波振幅與輻合區內海表面散射強度增強值的空間積分呈正相關,由上可獲得以海表面散射強度預測非線性內波水平速度輻合與振幅的經驗公式。本研究分析總結,於低風狀態下,遙測量測可提供對非線性內波水平速度輻合、振幅、與空間結構的預測,這些經驗公式可進一步應用,也可於不同風速、表面波、非線性內波情況下,或其他遙測方法下修改。
zh_TW
dc.description.abstractThe study is focused on the large-amplitude nonlinear internal waves (NLIW) in the South China Sea (SCS): the propagation characteristics, the energy, energy flux and dissipation, and the relationship between the interior properties of NLIW and its surface scattering strength.
Three sets of long-term ADCP measurements taken on the Dongsha plateau, integrating with both the shipboard measurement and the remote sensing data, are used to study the propagation characteristics of the NLIWs. The moorings were aligned along 21o05’N near the eastern edge of the Dongsha plateau. From east to west, the distances between the two successive moorings are ~8.5’ and ~17’, respectively. The NLIW propagating directions and speeds were computed by NLIW-induced current velocity and NLIW arrival time between two successive mooring stations, respectively. The averaged propagating direction of NLIW is 165o, which is northwestward. The averaged propagating speeds between two successive mooring stations are 1.83±0.38 m/s and 1.61±0.20 m/s from east to west. The above estimations are further verified by the observations of both shipboard marine radar and satellite images. The propagating directions reveal irregular variation. Nonetheless, the propagating speeds, which are higher in Aug.-Oct. and are slower in Jan.-Mar, reveal apparently seasonal variation. Such seasonal variation could relate with the typically seasonal stratification in the SCS, strong stratification in Aug.-Oct and weak stratification in Jan.-Mar. The linear phase speed, which is calculated using the climatological density profiles of Generalized Digital Environmental Model (GDEM) output, has good correlation with the measured NLIW propagating speed. Both the propagation direction and speed reveal daily inequality. Two types of NLIW appear reciprocally around the spring tide. One of them propagates faster and mainly northwestward and the other propagates slower and more northward than the previous one. It could be associated with the tidal current in the Luzon Strait.
Three sets of ADCP measurements taken on the Dongsha plateau, on the shallow continental shelf, and on the steep continental slope in the northern South China Sea are analyzed. The data show strong divergences of energy and energy flux of nonlinear internal waves along and across waves’ prevailing westward propagation path. The NLIW energy flux is 8.5 kW m-1 on the plateau, only 0.25 kW m-1 on the continental shelf 220 km westward along the propagation path, and only 1 kW m-1 on the continental slope 120 km northward across the propagation path. Along the wave path on the plateau, the average energy flux divergence of NLIW is ~0.04 W m-2, which corresponds to a dissipation rate of O(10-7-10-6)Wkg-1. Combining the present with previous observations and model results, a scenario of NLIW energy flux in the SCS emerges. NLIWs are generated east of the plateau, propagate predominantly westward across the plateau along a beam of ~100 km width that is centered at ~210N, and dissipate nearly all their energy before reaching the continental shelf.
Surface signatures and interior properties of NLIWs were measured during a period of weak northeast wind (~2 m s-1) using shipboard marine radar, ADCP, CTD, and echo sounder. The surface scattering strength measured by the marine radar is positively correlated with the local wind speed when NLIWs are absent. When NLIWs approach, the surface scattering strength within the convergence zone is enhanced. The sea surface scattering induced by NLIWs is equivalent to that of a ~6 m s-1 surface wind speed, i.e., three times greater than the actual surface wind speed. The horizontal spatial structure of the enhanced sea surface scattering strength predicts the horizontal spatial structure of the NLIW. The observed average half-amplitude full width of NLIWs is 1.09±0.2 km; the average half-amplitude full width of the enhanced scattering strength is ~0.57 . The average half-amplitude full width of the enhanced horizontal velocity convergence of NLIWs is approximately equal to . The peak of the enhanced surface scattering leads the center of NLIWs by ~0.46 . NLIW horizontal velocity convergence is positively correlated with the enhancement of the surface scattering strength. NLIW amplitude is positively correlated with the spatial integration of the enhancement of the surface scattering strength within the convergence zone of NLIWs. The analysis concludes that in low-wind conditions remote sensing measurements may provide useful predictions of horizontal velocity convergences, amplitudes, and spatial structures of NLIWs. Further applications and modification of our empirical formulas in different conditions of wind speed, surface waves, and NLIWs, or with other remote sensing methods are encouraged.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:59:51Z (GMT). No. of bitstreams: 1
ntu-97-D93241001-1.pdf: 10508165 bytes, checksum: b99f3370a0bb46166cbc64279cc6bfc2 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents口試委員會審定書……………………………………………………………….……i
誌謝……………………………………………………………….……………………ii
中文摘要………………………………………………......…………………………..iii
英文摘要…………………...………………………………………………………….. v
目錄……………………………..……………………………………………………viii
圖目錄………………………………………………………………………………....xi
表目錄………………………………………………………………………………..xiv
第一章 緒論…………………………………………………………………..1
1-1非線性內波簡介……………………………………………………………...1
1-2南海非線性內波……………………………………………………………...6
1-2.1 南海地理環境與過去非線性內波的觀測…………………………...6
1-2.2 南海非線性內波之觀測結果………………………………………...9
1-3 現今研究目的………………………………………………………………13
第二章 南海非線性內波行進之長期變化…………………………………………15
2-1 簡介…………………………………………………………………………16
2-2實驗與資料………………………………………………………………….17
2-3 分析方法……………………………………………………………………20
2-3.1非線性內波的辨識與追蹤…………………………………………..21
2-3.2非線性內波行進方向的估算………………………………………..22
2-3.3非線性內波行進速度的估算………………………………………..25
2-4行進方向與行進速度之長期變化…………………………….……………27
2-5討論與總結………………………………………………………………….34
2-5.1 討論………………………………………………………………….34
2-5.2 總結………………………………………………………………….35
第三章 南海北部非線性內波能量通量………………………………………….36
3-1簡介………………………………………………………………………...37
3-2實驗與資料………………………………………………………………...37 3-3內波能量…………………………………………………………………...39
3-4內波能量通量………………………………………………….…………..41
3-5非線性內波能量通量輻散與消散率…………………………….……….46
3-6討論與結論…………………………….………………………………….46
第四章 非線性內波表面訊號與其內部性質:觀測與應用……………………...48
4-1簡介………………………………………………………………………...50
4-2觀測與實驗………………………………………………………………...51
4-3海表面散射強度…………………………………………………………...52
4-3.1風所引起的海表面散射強度………………………………………53
4-3.2表面波與非線性內波調變的海表面散射…………………………56
4-4 非線性內波遙測與現場觀測之比較……………………………………..58
4-4.1 非線性內波空間結構與位置遙測………………………………...58
4-4.2非線性內波水平輻合強度遙測……………………………………60
4-4.3 非線性內波振幅遙測……………………………………………...63
4-5 討論與結論…………………………………………………...…………...63
第五章 總結 ……………………………………………………………………...65
參考文獻…………………………………………………………………….………68
附錄A 正模理論與正模分解…………………...………………………………..75
附錄B 非線性內波流函數之計算……………………………………………….78
附錄C 非線性內波空間結構…………………………………………………….80
個人著作表………………………………………………………………………….81
附件一 A composite view of surface signatures and interior properties of nonlinear internal waves: Observations and applications
附件二 Energy flux of nonlinear internal waves in northern South China Sea
附件三 Energy of nonlinear internal waves in the South China Sea
附件四 Solitons Northeast of Tung-Sha Island During the ASIAEX Pilot Studies
dc.language.isozh-TW
dc.title南海巨大振幅內波之研究zh_TW
dc.titleStudy of Large-Amplitude Nonlinear Internal Waves in the South China Seaen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree博士
dc.contributor.coadvisor連仁杰(Ren-Chieh Lien)
dc.contributor.oralexamcommittee陳慶生(Ching-Sheng Chern),王冑(Joe Wang),楊穎堅(Yiing Jang Yang),莊文思(Wen-Ssn Chuang)
dc.subject.keyword內波,非線性內波,內孤立波,南海,東沙,雷達,zh_TW
dc.subject.keywordinternal waves,nonlinear internal waves,Internal Solitary waves,South China Sea,Dongsha,Radar,en
dc.relation.page170
dc.rights.note有償授權
dc.date.accepted2008-04-28
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept海洋研究所zh_TW
顯示於系所單位:海洋研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
10.26 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved