請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38058
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 許建宗(Chien-Chung Hsu) | |
dc.contributor.author | Hsin-Chieh Chiang | en |
dc.contributor.author | 江欣潔 | zh_TW |
dc.date.accessioned | 2021-06-13T15:59:16Z | - |
dc.date.available | 2010-05-26 | |
dc.date.copyright | 2008-05-26 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-05-08 | |
dc.identifier.citation | Alvarado Bremer, J.R., Baker, A.J., Mejuto, J., 1995. Mitochondrial DNA control region sequences indicate extensive mixing of swordfish (Xiphias gladius) populations in the Atlantic Ocean. Canadian Journal of Fisheries and Aquatic Science, 52:1720-1732.
Alvarado-Bremer, J.R., Naseri, I., Ely, B., 1997. Orthodox and unorthodox phylogenetic relationships among tunas revealed by the nucleotide sequence analysis of the mitochondrial DNA control region. Journal of Fish Biology, 50: 540-554. Alvarado-Bremer, J.R., Stequert, B., Robertson, N.W., Ely, B., 1998. Genetic evidence for inter-oceanic subdivision of bigeye tuna (Thunnus obesus Lowe) populations. Marine Biology, 132: 547-557. Alvarado-Bremer, J.R., Vinas, J., Mejutoc, J., Ely, B., Pla, C., 2005. Comparative phylogeography of Atlantic bluefin tuna and swordfish: the combined effects of vicariance, secondary contact, introgression, and population expansion on the regional phylogenies of two highly migratory pelagic fishes. Molecular Phylogenetics and Evolution, 36: 169-187. Appleyard, S.A., Grewe, P.M., Innes, B.H., Ward, R.D., 2001. Population structure of yellowfin tuna (Thunnus albacares) in the western Pacific Ocean, inferred from microsatellite loci. Marine Biology, 139: 383-393. Appleyard, S.A., Ward, R.D., Grewe, P.M., 2002. Genetic stock structure of bigeye tuna in the Indian Ocean using mitochondrial DNA and microsatellites. Journal of Fish Biology, 60: 767-770. Aquadro, C.F., Greenberg, B.D., 1983. Human mitochondrial DNA variation and evolution: analysis of nucleotide sequences from seven individuals. Genetics, 103: 287-312. Avise, J.C., Arnold, J., Ball, R.M., Bermingham, E., Lamb, T., Neigel, J.E., Reeb, C.A., Saunders, N.C., 1987. Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annual Review of Ecology and Systematics, 18: 489-522. Avise, J., 1998. Phylogeography. Cambridge, Mass: Harvard University Press. Avise, J.C., 2000. Phylogeography: the history and formation of species. Harvard University Press, Cambridge, Massachusetts, U.S.A. Avise, J.C., 2004. Molecular markers, natural history and evolution, 2nd ed. Sinauer Associates, Sunderland MA. Brown, G.G., Gadaleta, G., Pepe, G., Saccone, C., Sbisa, E., 1986. Structural conservation and variation in the D-loop-containing region of vertebrate mitochondrial DNA. Journal of Molecular Biology, 192: 503-511. Carlsson, J., McDowell, J.R., Diaz-Jaimes, P., Carlsson, J.E., Boles, S.B., Gold, J.R., Graves, J.E., 2004. Microsatellite and mitochondrial DNA analyses of Atlantic bluefin tuna (Thunnus thynnus thynnus) population structure in the Mediterranean Sea. Molecular Ecology, 13: 3345-3356. Coates, A.G., Obando, J.A., 1996. The geologic evolution of the Central American Isthmus. In: Evolution and environment in tropical America (Jackson, J.B.C., Coates, A.G., and Budd, A., eds). Chicago, IL: University of Chicago Press, 21-56. Collette, B.B., and Nauen, C.I., 1983. FAO Species catalogue. Vol.2. Scombrids of the world . An annotated and illustrated catalogue of tunas, mackerels, bonitos and related species known to date. Food and Agriculture Organization of the United Nations, Rome. Collette, B.B., 1997. Proc 5th Indo-Pacific Fish Conf, Nouméa, Soc. Fr. Icthyol, Mackerels, molecules, and morphology, 149-164. Collette, B.B., Reeb, C., Block, B.A. 2001. Systematics of the tunas and mackerels (Scombridae). In: Block BA and Stevens ED., editor. Tuna: Physiology, Ecology, and Evolution, Fish Physiology Series. Vol. 19. San Diego, Academic Press, 1-33. Chiang, H.C., Hsu, C.C., Lin, H.D., Ma, G.C., Chiang, T.Y., Yang, H.Y., 2006. Population structure of bigeye tuna (Thunnus obesus) in the South China Sea, Philippine Sea and western Pacific Ocean inferred from mitochondrial DNA. Fisheries Research, 79: 219-225. Chiang, H.C., Hsu, C.C., Wu, G.C.C., Chang, S.K., Yang, H.Y., 2007. Population structure of bigeye tuna (Thunnus obesus) in the Indian Ocean inferred from mitochondrial DNA. Fisheries Research, 90: 305-312. Chow, S., Okamoto, H., Miyabe, N., Hiramatsu, K., Barut, N., 2000. Genetic divergence between Atlantic and Indo-Pacific stocks of bigeye tuna (Thunnus obesus) and admixture around South Africa. Molecular Ecology, 9: 221-227. Donaldson, K.A., Wilson, R.R., 1999. Amphi-panamaic geminates of snook (Percoidei- Ccentropomidae) provide a calibration of divergence rates in the mitochondrial DNA control region of fishes. Molecular Phylogenetics and Evolution, 13: 208-213. Durand, J.D., Collet, A., Chow, S., Guinand, B., Borsa, P., 2005. Nuclear and mitochondrial DNA markers indicate unidirectional gene flow of Indo-Pacific to Atlantic bigeye tuna (Thunnus obesus) populations, and their admixture off southern Africa. Marine Biology, 147: 313-322. Ely, B., Vinas, J., Alvarado Bremer, J.R., Black, D., Lucas, L., Covello, K., Labrie, A.V., Thelen, E., 2005. Consequences of the historical demography on the global population structure of two highly migratory cosmopolitan marine fishes: the yellowfin tuna (Thunnus albacares) and the skipjack tuna (Katsuwonus pelamis). BMC Evolutionary Biology, 5: 19. Excoffier, L., Smouse, P.E., Quattro, J.M., 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics,131: 479-491. Excoffier, L., 1993. MINSPNET: Minimum Spanning Network. Department of Anthropology, University of Geneva, Switzerland. Felsenstein, J., 1985. Confidence limits on phylogenies: an approach using bootstrap. Evolution, 39: 783-791. Finnerty, J.R, Block, B.A., 1992. Direct sequencing of mitochondrial DNA detects highly divergent haplotypes in blue marlin (Makaira nigricans). Molecular Marine Biology and Biotechnology, 1:206-214. Fu, Y-X, Li, W-H, 1993. Statistical tests of neutrality of mutations. Genetics, 133: 693-709. Fu, Y.X., 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics, 147: 915-925. Futuyma, D.J., 1998. Evolutionary Biology, 3rd ed. Sinauer, Sunderland, MA. Gibbons, M.J., Barange, M., Hutchings, L., 1995. Zoogeography and diversity of euphausiids around southern Africa. Marine Biology, 123: 257-268. Gibbons, M.J., Thibault-Botha, D., 2002. The match between ocean circulation and zoogeography of epipelagic siphonophores around southern Africa. Journal of Marine Biological Association of the United Kingdom, 82: 801-810. Grant, W.S., Bowen, B.W., 1998. Population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. Journal of Heredity, 89: 415-426. Graves, J.E., McDowell, J.R., 1995. Inter-ocean genetic-divergence of istiophorid billfishes. Marine Biology, 122:193-203. Graves, J.E., McDowell, J.R., 2003. Stock structure of the world's istiophorid billfishes: a genetic perspective. Marine and Freshwater Research, 54:287-298. Grewe, P.M., Hampton, J., 1998. An assessment of bigeye (Thunnus obesus) population structure in the Pacific Ocean based on mitochondrial DNA and DNA microsatellite analysis. SOEST Publication 98-05, JIMAR Contribution 98-320. Guo, S., Thompson, E., 1992. Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics, 48: 361-372. Harpending, R.C., 1994. Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Human Biology, 66: 591-600. Hayashi, J.I., Tagashira, Y., Yoshida, M.C., 1985. Absence of extensive recombination between inter- and intraspecies mitochondrial DNA in mammalian cells. Experimental Cell Research, 160: 387-395. Hall, T.A., 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium, Ser. 41: 95-98. ICCAT, 2005. Report of the Second World Meeting on Bigeye Tuna. Madrid, Spain - March 10-13, 2004. Col. Vol. Sci. Pap. ICCAT, 57, 2, 3-38. ICCAT, 2006. Report for the Biennial Period, 2004-2005, Part II (2005), Vol. 1. International Commission for the Conservation of Atlantic Tunas, Madrid, Spain. Kumar, S., Tamura, K., Nei, M., 2004. MEGA3: Integrated Software for Molecular Evolutionary Genetics Analysis and Sequence Alignment Briefings in Bioinformatics, 5: 150-163. Martínez, P., Gonzalez, E.G.., Castilho, R., Zardoya, R., 2006. Genetic diversity and historical demography of Atlantic bigeye tuna (Thunnus obesus). Molecular Phylogeny and Evolution, 39: 404-416. Mantel, N., 1967. The detection of disease clustering and a generalized regression approach. Cancer Research, 27: 209-220. McLean, J.E., Hay, D.E., Taylor., E.B., 1999. Marine population structure in anadromous fish: life history influences patterns of mitochondrial DNA variation in the eulachon, Thaleichthys pacificus. Molecular Ecology, 8: S143- S158. McMillan, W.O., Palumbi, S.R., 1997. Rapid rate of control-region evolution in Pacific butterflyfishes (Chaerodontidae). Journal of Molecular Evolution, 45: 473-484. Nei, M., 1987. Molecular Evolutionary Genetics. Columbia University Press, New York. Palumbi, A. R., 1994. Genetic divergence: reproductive isolation, and marine speciation. Annual Review of Ecology and Systematics, 25: 547-572. Ramos-Onsins, S.E., Rozas, J., 2002. Statistical properties of new neutrality tests against population growth. Molecular Biology and Evolution, 19: 2092-2100. Rand, D.M., 1996. Neutrality tests of molecular markers and the connections between DNA polymorphism, demography, and conservation biology, Conservation Biology, 10: 665-671. Rogers, A.R., Harpending, H., 1992. Population growth makes waves in the distribution of pairwise genetic differences. Molecular Biology and Evolution, 9: 552-569. Rogers, A.R., 1995. Genetic evidence for a Pleistocene population explosion. Evolution, 49: 608-615. Rosel, P.E., Block, B.A., 1996. Mitochondrial control region variability and global population structure in the swordfish, Xiphias gladius. Marine Biology, 125:11-22. Rozas, J., Sanchez-DeI Barrio, J.C., Messeguer, X., Rozas, R., 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics, 19: 2496-2497. Saccone, C., Attimonelli, M., Sbisa, E., 1987. Structural elements highly preserved during the evolution of the D-loop-containing region in vertebrate mitochondrial DNA. Journal of Molecular Evolution, 26: 205-211. Saccone, C., Pesole, G., Sbisa, E., 1991. The main regulatory region of mammalian mitochondrial DNA: structure-function model and evolutionary pattern. Journal of Molecular Evolution, 33: 83-91. Satiou, N., Nei, M., 1987. The neighbor-joining method:a new method for reconstructing phylogenetic tree. Molecular Biology and Evolution, 4: 406-425. Schneider, S., Excoffier, L., 1999. Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA. Genetics, 152: 1079-1089. Schneider, S., Roessli, D., Excoffier, L., 2000. ARLEQUIN, Version 2.000: A software for population genetics data analysis. University of Geneva, Switzerland. Scoles, D.R., Graves, J.E., 1993. Genetic analysis of the population structure of yellowfin tuna, Thunnus albacares, from the Pacific Ocean. Fishery Bulletin US, 91: 690-698. Slatkin, M., Hudson, R.R., 1991. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics, 129: 555-562. Smouse, P. E., Long, J. C., Sokal, R. R., 1986. Multiple regression and correlation extensions of the Mantel Test of matrix correspondence. Systematic Zoology, 35: 627-632. Sneath, P.H.A., Sokal, R.R., 1973. Numerical Taxonomy. Freeman, San Francisco, pp 230-234. Suzuki, A., 1962. On the blood types of yellowfin and bigeye tuna. American Naturalist, 96: 239-246. Takeyama, H., Chow, S., Tsuzuki, H., Matsunaga, T., 2001. Mitochondrial DNA sequence variation within and between tuna Thunnus species and its application to species identification. Journal of Fish Biology, 58:1646-1657. Tajima, F., 1983. Evolutionary relationship of DNA sequences in finite populations. Genetics, 105: 467-460. Tajima, F., 1989a. The effect of change in population size on DNA polymorphism. Genetics, 123: 597-601. Tajima, F., 1989b. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123, 585-595. Tamura, K., Nei, M., 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10: 512-526. Tamura, K., Dudley, J., Nei, M., Kumar, S., 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24: 1596-1599. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G., 1997. The CLUSTALX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25: 4876-4882. Van Ballegooyen, R.C., Valentine, H.R., Lutjeharms, J.R.E., 1991. Modeling the Agulhas Current system. South African Journal of Science, 87: 569-571. Viñas, J., Alvarado Bremer, J.R., Pla, C., 2004. Inter-oceanic genetic differentiation among albacore (Thunnus alaunga) populations. Marine Biology, 149: 225-232. Watterson, G., 1975. On the number of segregating sites in genetical models without recombination. Theoretical Population Biology, 7: 256-276. Ward, R.D., Elliott, N.G., Grewe, P.M., Smolenski, A.J., 1994. Allozyme and mitochondrial DNA variation in yellowfin tuna (Thunnus albacares) from the Pacific Ocean. Marine Biology, 118: 531-539. Ward, R.D., Elliott, N.G.., Innes, B.H., Smolenski, A.J., Grewe, P.M., 1997. Global population structure of yellowfin tuna Thunnus albacares, inferred from allozyme and mitochondrial DNA variation. Fishery Bulletin, (Wash DC) 95: 566-575. Wright, S., 1951. The genetical structure of population. Annals of Eugenics,15: 323-354. Wright, S., 1965. The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution, 19:395-420. Zardoya, R., Castilho, R., Grande, C., Favre-Krey, L., Caetano, S., Marcato, S., Krey, G., Patarnello, T., 2004. Differential population structuring of two closely related fish species, the mackerel (Scomber scombrus) and the chub mackerel (Scomber japonicus), in the Mediterranean Sea, Molecular Ecology, 13, 7: 1785-1798. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38058 | - |
dc.description.abstract | 大目鮪(Thunnus obesus) ,又稱短鮪,為大洋性中表層水域的高洄游性魚種,主要分布於大西洋、印度洋、太平洋各海域,適水溫域為17-29℃之間,為高經濟價值魚種,亦為世界漁業之主要漁獲對象,因此如能確實瞭解該魚種之族群結構與來源,將有助於吾人對全球大目鮪資源之評估、管理與利用。本研究係利用粒線體基因標記之生物技術方法,鑑定全球大目鮪之系群結構,並探討其親源關係。本研究採集了太平洋(五個採樣區)、印度洋(五個採樣區)與大西洋(三個採樣區)之大目鮪肌肉樣品,其粒線體DNA(mtDNA)經萃取後,利用特定的引子(primer),針對mtDNA控制區約860個鹼基對,以聚合酶鏈鎖反應(PCR)方法,將mtDNA控制區放大並定序,成功得到共695個大目鮪mtDNA控制區序列。所得控制區序列以Clustal X軟體進行分析比對,隨後,將此不同的單倍基因型以Tamura-Nei model 計算其遺傳距離,並利用neighbor-joining方法建構所得大目鮪單倍基因型之親緣關係樹。NJ樹形的可信度以1000次重複的bootstrap法進行統計檢測。結果顯示:親緣關係樹可將全球的大目鮪分為三個clades:Clade I 包含太平洋(約99%)、印度洋(約98%)、大西洋海域之大目鮪單倍基因型;Clade II為大西洋特有之族群(約72%);Clade III則分布於太平洋與印度洋海域。此外,我們利用AMOVA 與F-statistics分析全球大目鮪的族群結構,結果顯示各洋域之內的族群遺傳結構分化情況並不顯著,即太平洋內、印度洋內與大西洋內為單一系群,印度洋與太平洋大目鮪有基因交流的現象,惟大西洋各採樣區與太平洋、印度洋各個採樣區有顯著的族群遺傳分化。最後,Tajima’s D test、Fu’s FS test以及 mismatch distribution的分析結果顯示,Clade I 與Clade II族群內的中性檢測為顯著負值,且其mismatch distribution為雙峰分布,推測該族群經歷過瓶頸效應然後再擴張其族群。此外,大目鮪族群的核苷酸歧異度與基因型歧異度皆高,推測,大目鮪在過去可能因冰河事件而遭受到地理隔離,在冰河期之後這些被隔離的族群又發生基因交流,並有族群擴張的現象。 | zh_TW |
dc.description.abstract | Phylogeography and population structure of bigeye tuna (Thunnus obesus), an important commercial species widely distributed throughout the Pacific Ocean, Indian Ocean and Atlantic Ocean were investigated using the first hypervariable region (HVR-1) of the mitochondrial control region sequence data. A total of 695 specimens were sampled from five regions in the Pacific Ocean (Western Pacific, Hawaii, Line, Marquesas and Eastern Pacific), five regions in the Indian Ocean (Cocos Islands, Southeastern Indian Ocean, Southwestern Indian Ocean, Seychelles and South Africa), and three regions in the Atlantic Ocean (North Guinea, South Guinea and Brazil). The reconstructed neighbor-joining phylogenetic tree showed that haplotypes from the Pacific Ocean and Indian Ocean could be grouped into two clades (Clade I and Clade III), whereas in the Atlantic Ocean, two divergent clades (Clade I and Clade II) coexisted. Each single stock of bigeye tuna in the Pacific, Indian and Atlantic Oceans was supported by hierarchical AMOVA tests and pairwise ΦST analyses. The Clade I phylogroup was a ubiquitous inter-oceanic clade which dominated the Pacific and Indian Oceans, making up 99% and 98% of these specimens. Clade II was a specific group exclusively restricted to the Atlantic Ocean which made up 72.3% of its specimens. A minor phylogroup, Clade III existed in both the Pacific and Indian Oceans with an exception in the Eastern Pacific Ocean. Significant negative Fu’s FS statistics and unimodal mismatch distributions indicated that the Clade I and Clade II phylogroups were from expanding populations. The low Harpending’s raggedness indexes further evidenced population expansion. The secondary contacts between previously differentiated allopatric lineages appeared to be a more possible explanation in this scenario. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T15:59:16Z (GMT). No. of bitstreams: 1 ntu-97-D91241005-1.pdf: 887330 bytes, checksum: fafbf3cf6a9b39153c288aab51a3eb91 (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 口試委員會審定書............................................................................................................i
謝辭...................................................................................................................................ii 中文摘要..........................................................................................................................iii Abstract..............................................................................................................................v Chapter 1: Introduction......................................................................................................1 1.1 Bigeye tuna (Thunnus obesus) ..........................................................................1 1.2 Previous studies on bigeye tuna population genetics........................................2 1.3 Phylogeography ................................................................................................5 1.4 Aim of study......................................................................................................7 Chapter 2: Materials and Methods...................................................................................10 2.1 Sampling..........................................................................................................10 2.2 DNA extraction................................................................................................10 2.3 PCR amplification and automated sequencing………………………………12 2.4 Data Analyses..................................................................................................12 2.4.1 Alignment………………………………………..…………………..13 2.4.2 Genetic diversity and structure…………………..…………………..13 2.4.3 Analyses of population history…………………..…………………..15 Chapter 3: Results............................................................................................................19 3.1 Western Pacific Ocean.....................................................................................19 3.1.1 Sampling..............................................................................................19 3.1.2 Molecular characteristics.....................................................................19 3.1.3 Patterns of population structure...........................................................20 3.2 Indian Ocean....................................................................................................21 3.2.1 Sampling..............................................................................................21 3.2.2 Molecular characteristics.....................................................................22 3.2.3 Phylogeny and Patterns of population structure..................................23 3.2.4 Demographic pattern...........................................................................25 3.3 Global .............................................................................................................26 3.3.1 Sampling..............................................................................................26 3.3.2 Genetic Diversity and structure...........................................................26 3.3.3 Analyses of population history............................................................29 Chapter 4: Discussion......................................................................................................31 Reference.........................................................................................................................42 Figures.............................................................................................................................54 Tables...............................................................................................................................64 | |
dc.language.iso | en | |
dc.title | 全球大目鲔族群結構與親緣地理學之研究 | zh_TW |
dc.title | Phylogeography and Population structure of Bigeye Tuna (Thunnus obesus) Inferred from Mitochondrial DNA sequences | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 博士 | |
dc.contributor.coadvisor | 楊西苑(Hsi-Yuan Yang) | |
dc.contributor.oralexamcommittee | 劉錫江(Hsi-Chiang Liu),戴昌鳳(Chang-Feng Dai),于宏燦(Hon-Tsen Yu),丘臺生(Tai-Sheng Chiu),陳昭倫(Chaolun Allen Chen) | |
dc.subject.keyword | 大目鮪,粒線體基因,控制區,族群遺傳,印度洋,大西洋,太平洋, | zh_TW |
dc.subject.keyword | Bigeye tuna,population genetics,phylogeography,mitochondrial DNA,control region,Pacific Ocean,Indian Ocean,Atlantic Ocean, | en |
dc.relation.page | 78 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-05-09 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 海洋研究所 | zh_TW |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 866.53 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。