Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 病理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38028
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃佩欣(Pei-Hsin Huang)
dc.contributor.authorI-Chun Hsiehen
dc.contributor.author謝宜君zh_TW
dc.date.accessioned2021-06-13T15:57:28Z-
dc.date.available2016-10-07
dc.date.copyright2011-10-07
dc.date.issued2011
dc.date.submitted2011-08-09
dc.identifier.citationAdams, C. M., Anderson, M. G., Motto, D. G., Price, M. P., Johnson, W. A., & Welsh, M. J. (1998). Ripped pocket and pickpocket, novel Drosophila DEG/ENaC subunits expressed in early development and in mechanosensory neurons. J Cell Biol, 140(1), 143-152.
Arevalo, J. C., Yano, H., Teng, K. K., & Chao, M. V. (2004). A unique pathway for sustained neurotrophin signaling through an ankyrin-rich membrane-spanning protein. EMBO J, 23(12), 2358-2368. doi: 10.1038/sj.emboj.7600253
Brunet, A., Datta, S. R., & Greenberg, M. E. (2001). Transcription-dependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway. Current Opinion in Neurobiology, 11(3), 297-305.
College of Arts and Sciences, U. o. S. C. Anatomy and Development of A Drosophila Larva
Cowley, S., Paterson, H., Kemp, P., & Marshall, C. J. (1994). ACTIVATION OF MAP KINASE KINASE IS NECESSARY AND SUFFICIENT FOR PC12 DIFFERENTIATION AND FOR TRANSFORMATION OF NIH 3T3 CELLS. Cell, 77(6), 841-852.
Gartner, U., Alpar, A., Seeger, G. A., Heumann, R., & Arendt, T. (2004). Enhanced Ras activity in pyramidal neurons induces cellular hypertrophy and changes in afferent and intrinsic connectivity in synRas mice. International Journal of Developmental Neuroscience, 22(3), 165-173. doi: 10.1016/j.ijdevenue.2004.02.001
Grueber, W. B., Jan, L. Y., & Jan, Y. N. (2003). Different levels of the homeodomain protein cut regulate distinct dendrite branching patterns of Drosophila multidendritic neurons. Cell, 112(6), 805-818.
Higuero, A. M., Sanchez-Ruiloba, L., Doglio, L. E., Portillo, F., Abad-Rodriguez, J., Dotti, C. G., & Iglesias, T. (2010). Kidins220/ARMS Modulates the Activity of Microtubule-regulating Proteins and Controls Neuronal Polarity and Development. Journal of Biological Chemistry, 285(2), 1343-1357. doi: 10.1074/jbc.M109.024703
Hoogenraad, C. C., Milstein, A. D., Ethell, I. M., Henkemeyer, M., & Sheng, M. (2005). GRIP1 controls dendrite morphogenesis by regulating EphB receptor trafficking. Nature Neuroscience. doi: 10.1038/nn1487
Jan, Y.-N., & Jan, L. Y. (2010). Branching out: mechanisms of dendritic arborization. Nature Reviews Neuroscience, 11(5), 316-328. doi: 10.1038/nrn2836
Jaworski, J. (2005). Control of Dendritic Arborization by the Phosphoinositide-3'-Kinase-Akt-Mammalian Target of Rapamycin Pathway. Journal of Neuroscience, 25(49), 11300-11312. doi: 10.1523/jneurosci.2270-05.2005
Klein, R. (2008). Bidirectional modulation of synaptic functions by Eph/ephrin signaling. Nature Neuroscience, 12(1), 15-20. doi: 10.1038/nn.2231
Kong, H., Boulter, J., Weber, J. L., Lai, C., & Chao, M. V. (2001). An evolutionarily conserved transmembrane protein that is a novel downstream target of neurotrophin and ephrin receptors. J Neurosci, 21(1), 176-185.
Kumar, V. (2005). Regulation of Dendritic Morphogenesis by Ras-PI3K-Akt-mTOR and Ras-MAPK Signaling Pathways. Journal of Neuroscience, 25(49), 11288-11299. doi: 10.1523/jneurosci.2284-05.2005
Lee, T., Lee, A., & Luo, L. (1999). Development of the Drosophila mushroom bodies: sequential generation of three distinct types of neurons from a neuroblast. Development, 126(18), 4065-4076.
Marshall, C. J. (1995). SPECIFICITY OF RECEPTOR TYROSINE KINASE SIGNALING - TRANSIENT VERSUS SUSTAINED EXTRACELLULAR SIGNAL-REGULATED KINASE ACTIVATION. Cell, 80(2), 179-185.
Orgogozo, V., & Grueber, W. B. (2005). FlyPNS, a database of the Drosophila embryonic and larval peripheral nervous system. BMC Developmental Biology, 5(1), 4. doi: 10.1186/1471-213x-5-4
Park, K. K., Liu, K., Hu, Y., Kanter, J. L., & He, Z. (2010). PTEN/mTOR and axon regeneration. Experimental Neurology, 223(1), 45-50. doi: 10.1016/j.expneurol.2009.12.032
Parrish, J. Z., Emoto, K., Kim, M. D., & Jan, Y. N. (2007). Mechanisms that Regulate Establishment, Maintenance, and Remodeling of Dendritic Fields. Annual Review of Neuroscience, 30(1), 399-423. doi: 10.1146/annurev.neuro.29.051605.112907
Parrish, J. Z., Xu, P., Kim, C. C., Jan, L. Y., & Jan, Y. N. (2009). The microRNA bantam Functions in Epithelial Cells to Regulate Scaling Growth of Dendrite Arbors in Drosophila Sensory Neurons. Neuron, 63(6), 788-802. doi: 10.1016/j.neuron.2009.08.006
Qui, M. S., & Green, S. H. (1992). PC12 cell neuronal differentiation is associated with prolonged p21ras activity and consequent prolonged ERK activity. Neuron, 9(4), 705-717.
Roffe, M., Beraldo, F. H., Bester, R., Nunziante, M., Bach, C., Mancini, G., . . . Hajj, G. N. M. (2010). Prion protein interaction with stress-inducible protein 1 enhances neuronal protein synthesis via mTOR. Proceedings of the National Academy of Sciences, 107(29), 13147-13152. doi: 10.1073/pnas.1000784107
Rolls, M. M., & Doe, C. Q. (2004). Baz, Par-6 and aPKC are not required for axon or dendrite specification in Drosophila. Nature Neuroscience, 7(12), 1293-1295. doi: 10.1038/nn1346
Rolls, M. M., Satoh, D., Clyne, P. J., Henner, A. L., Uemura, T., & Doe, C. Q. (2007). Polarity and intracellular compartmentalization of Drosophila neurons. Neural Development, 2(1), 7. doi: 10.1186/1749-8104-2-7
Sánchez-Soriano, N., Tear, G., Whitington, P., & Prokop, A. (2007). Drosophila as a genetic and cellular model for studies on axonal growth. Neural Development, 2(1), 9. doi: 10.1186/1749-8104-2-9
St Johnston, D. (2002). The Art and Design of Genetic Screens: Drosophila Melanogaster. Nature Reviews Genetics, 3(3), 176-188. doi: 10.1038/nrg751
Takei, N. (2001). Brain-derived Neurotrophic Factor Enhances Neuronal Translation by Activating Multiple Initiation Processes. COMPARISON WITH THE EFFECTS OF INSULIN. Journal of Biological Chemistry, 276(46), 42818-42825. doi: 10.1074/jbc.M103237200
Tayler, T. D. (2004). Compartmentalization of visual centers in the Drosophila brain requires Slit and Robo proteins. Development, 131(23), 5935-5945. doi: 10.1242/dev.01465
Tettamanti, M., Armstrong, J. D., Endo, K., Yang, M. Y., Furukubo-Tokunaga, K., Kaiser, K., & Reichert, H. (1997). Early development of the Drosophila mushroom bodies, brain centres for associative learning and memory. Development Genes and Evolution, 207(4), 242-252. doi: 10.1007/s004270050112
Thomas, G. M., & Huganir, R. L. (2004). Mapk cascade signalling and synaptic plasticity. [Review]. Nature Reviews Neuroscience, 5(3), 173-183. doi: 10.1038/nrn1346
Weeber, E. J., & Sweatt, J. D. (2002). Molecular neurobiology of human cognition. [Review]. Neuron, 33(6), 845-848.
Wu, S. H., Arévalo, J. C., Sarti, F., Tessarollo, L., Gan, W.-B., & Chao, M. V. (2009). Ankyrin Repeat-rich Membrane Spanning/Kidins220 protein regulates dendritic branching and spine stabilityin vivo. Developmental Neurobiology, 69(9), 547-557. doi: 10.1002/dneu.20723
Xiang, Y., Yuan, Q., Vogt, N., Looger, L. L., Jan, L. Y., & Jan, Y. N. (2010). Light-avoidance-mediating photoreceptors tile the Drosophila larval body wall. Nature, 468(7326), 921-926. doi: 10.1038/nature09576
Zhong, L., Hwang, R. Y., & Tracey, W. D. (2010). Pickpocket Is a DEG/ENaC Protein Required for Mechanical Nociception in Drosophila Larvae. Current Biology, 20(5), 429-434. doi: 10.1016/j.cub.2009.12.057
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38028-
dc.description.abstractARMS (Ankyrin repeat-rich membrane spanning),也稱 Kindins220 (kinase D-interacting substrate of 220 kDa),是在演化上從線蟲到人類都有的高度保留基因。ARMS可以在許多組織中被偵測到,尤其最大量表現在發育中或成體的神經組織中,暗示其在神經系統中的重要性。之前的研究指出ARMS是酪胺酸激酶受體的下游分子,將訊號傳遞經由有絲分裂原激活蛋白激酶途徑(mitogen-activated protein kinase, MAPK)來引發有絲分裂原激活蛋白激酶持續的磷酸化,進而調控神經元的極性與神經纖維的生長。
此篇我們利用果蠅遺傳學來研究ARMS在神經系統中所扮演的角色。先前實驗室已發現在幼蟲時期,將眼碟經由核醣核酸干擾(RNA interference)使其ARMS減少,會造成成蟲複眼缺陷。此結果驅使我們更進一步去細究是否那些缺陷是發生在更早的發育時期。在檢視三齡幼蟲時期之果蠅視葉(optic lobe)的光受器1到8 (R1-R8)之後,並未發現任何缺陷。我們也檢查在三齡幼蟲晚期的其他神經器官,包括蕈狀體 (嗅覺學習與記憶中心)、腹部神經索(用來處理與傳送感覺神經傳來的訊號以及將訊號傳遞給運動神經)和周邊神經,觀察ARMS減少時是否會對其造成影響。結果顯示蕈狀體和腹部神經索沒有被ARMS減少所影響。然而,我們發現三齡幼蟲晚期,其周邊神經系統中的第四級樹突分枝神經元的ddaC,和控制組比較下,ARMS減少時呈現樹突複雜度降低。Sholl氏分析和Neurolucida分析證實ARMS減少所造成的樹突複雜度降低是由於其較高級數的樹突神經纖維分枝減少、樹突末端點的數量也減少。但是ARMS減少並不影響從神經細胞本體所長出之第一級樹突的數量與細胞本體大小。為了更進一步了解ddaC樹突複雜度降低是因為樹突發育不良還是維持不良,我們觀察了更早時期,包括二齡幼蟲中期和三齡幼蟲早至中期的ddaC。此外,我們證實在ddaC中所見到的缺陷並不是因為核醣核酸干擾失準,因為過度表現ARMS可以救回ARMS減少所造成的缺陷。
已知ARMS是ephrin/Eph受體的下游分子,包含在有絲分裂原激活蛋白激酶途徑中,也有可能包含在磷脂醯肌醇激酶(phosphoinositide 3-kinases; PI3K)途徑裡,因此我們在有ARMS被核醣核酸干擾的背景下,與變異的Eph、PI3K或 MAPK等個別做結合表現,檢視其對三齡幼蟲晚期的ddaC之樹突複雜度的影響。
zh_TW
dc.description.abstractARMS (Ankyrin repeat-rich membrane spanning), also known as Kindins220 (kinase D-interacting substrate of 220 kDa), is an evolutionarily highly conserved gene from nematode to human. ARMS can be detected in several tissues, but is most abundantly expressed in the developing and adult neural tissues, suggesting its biological role in the nervous system. Previous studies demonstrate that ARMS is a downstream target of receptor tyrosine kinase (RTK), which signals via MAPK (mitogen-activated protein kinase) pathway for sustained MAPK phosphorylation. By this way, ARMS regulates neuronal polarity and neurite outgrowth.
To investigate ARMS role in the nervous system, we have exploited Drosophila genetics. RNAi mediated knockdown of ARMS with driven expression in the eye disc in larvae stage results in defect of drosophila ommatidia in adult fly. This finding prompts us to further dissect whether such defect occurs in earlier developmental stage. By examing photoreceptors R1-R8 of optic lobe at late-third larval stage, we do not observe any defect. We thus turn to screen mushroom body (organ for olfaction and memory storage), ventral nerve cord (for transducing and processing signaling from sensory neurons to motor neurons), and the PNS (peripheral nervous system) in the developing nervous system at late-third instar stage to search for neuronal defect affected by ARMS knockdown. The results showed that the development of mushroom body and ventral nerve cord are not influenced by ARMS knockdown. However, we found ddaC, one of the class IV da (dendritic arborization) neuron in peripheral nervous system, exhibited decreased dendritic complexity in ARMS knockdown larvae compared with that in control wild-type larvae. Sholl analysis and neurolucida analysis further highlights ARMS RNAi-mediated decreased dendritic complexity results from decreased dendritic end numbers caused by less branching in higher branching orders, but not from decreased number of trees emanating from cell body. In addition, the size of cell soma does not change in neurons with RNAi of ARMS. To further understand whether alteration in dendritic complexity is due to dysregulation in the establishment or the maintenance of ddaC dendrites, we observed ddaC at earlier stage, that is, mid-second stage and early-mid third stage. We also demonstrate that the phenotype observed in larvae ddaC is not due to off-target effect of RNAi since that overexpression of ARMS rescued the defect.
Given that ARMS is the downstream of ephrin/Eph and is involved in MAPK pathway and probably in PI3K (phosphoinositide 3-kinases) pathway, we examined dendritic complexity of the third instar ddaC in the genetic background of ARMS knockdown combined with altered Eph, or PI3K, or MAPK signaling activity.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:57:28Z (GMT). No. of bitstreams: 1
ntu-100-R98444006-1.pdf: 5990745 bytes, checksum: 8cbc3bc531ae448585d5c91bf3f33208 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsAbstract ………i
Abstract (Chinese) ………iii
Abbreviation ………v
Chapter I. Introduction
Section 1. ARMS ………1
Section 2. ARMS in neuron differentiation ………1
2.1. The distribution of ARMS transcripts ………1
2.2. ARMS regulates dendritic branching and spine stability ………1
2.3. ARMS regulates the establishment of neuronal polarity and
Development ………2
Section 3. ARMS and Trks, Eph, MAPK in neuron differentiation ………3
3.1. ARMS is a downstream target of receptor tyrosine kinase (RTK) and
plays a role in BDNF-induced neurite outgrowth ………3
3.2. ARMS is involved in MAPK (mitogen-activated protein kinase)
pathway for sustained MAPK phosphorylation ………4
3.3. BDNF activates MAPK pathway and PI3K-Akt pathway ………5
3.4. The cooperation of Ras-MAPK and Ras-PI3K-Akt-mTOR pathways to
regulate dendritic morphogenesis ………5
Section 4. Drosophila ………6
4.1. Life cycle ………6
4.2. UAS-GAL4 system ………7
4.3. Nervous systems at larvae stage ………7
(1) Optic lobe of visual system ………7
(2) Mushroom body ………8
(3) Ventral nerve cord ………8
(4) ddaC of class IV da neuron in peripheral nervous system ………8
Section 5. Preliminary Results from our Lab ………10
Chapter II. Hypothesis and Specific Aim ………11
Chapter III. Materials and Methods ………12
Chapter IV. Results ………17
Section 1. To investigate which neurons are specifically affected by ARMS
knockdown during the development of nervous system in
Drosophila ………17
1.1. ARMS knockdown caused no effect on axons of eye disc ………17
1.2. ARMS knockdown caused no effect on mushroom body ………19
1.3. ARMS knockdown caused no effect on ventral nerve cord ………19
1.4. ARMS knockdown resulted in reduction of dendritic complexity of ddaC neurons and tiling at late-thirs instar stage ………20
1.5. The reduction of dendrite complexity of ddaC neurons was due to the reduced number of dendrite ends and orders ………21
1.6. Dicer overexpression enhances the effect of ARMS-RNAi on decreased dendritic complexity ………22
1.7. ARMS overexpression partially rescues ARMS-RNAi mediated decrease of ddaC dendrite ………22
1.8. ARMS knockdown did not show any defect in ddaC neurons at second instar stage ………23
1.9. ARMS knockdown in ddaC neurons show mild defect at early-third instar stage ………24
Section 2. Whether ARMS is the downstream of Eph/ephrin and whether it is
involved in PI3K or MAPK pathways to regulate neuronal development in Drosophila ………25
2.1. Consituitve activated PI3K suppresses ARMS-RNAi mediated defects
in ddaC ………25
2.2. S6kKQ and ARMS-RNAi showed synergistic effects on dendritic
morphogenesis ………25
2.3. The effect of erk loss of function (rl1) was too weak to have a
conclusion………27
2.4. Eph and ARMS could be in the same pathway to regulate dendritic
complexity………28
2.5. Ephrin did not affect ARMS in ddaC………28
Chapter V. Discussions ………30
Chapter VI. Conclusions and Perspectives ………38
References ………40
Figures ………45
Tables ………78





Figures
Figure 1. ARMS knockdown is confirmed by RT-PCR ………45
Figure 2. ARMS knockdown causes no effect on axons of eye disc ………46
Figure 3. ARMS knockdown causes no effect on mushroom body ………48
Figure 4. ARMS knockdown causes no effect on ventral nerve cord ………49
Figure 5-1. ARMS knockdown results in the reduction of dendritic branching of
ddaC at late-third instar stage ………50
Figure 5-2. ARMS knockdown results in the reduction of dendritic complexity of
ddaC and the reduction of dendritic complexity of ddaC neurons is due to
the reduced number of dendrite ends and orders ………51
Figure 6. ARMS knockdown results in the reduction of tiling at late-third instar
stage ………53
Figure 7. Dicer overexpression enhances the effect of ARMS-RNAi on decreased
dendritic complexity ………54
Figure 8. ARMS overexpression partially rescues ARMS-RNAi mediated decrease
of ddaC dendrite ………56
Figure 9. ARMS knockdown do not show any defect in ddaC neurons at second
instar stage ………59
Figure 10. ARMS knockdown in ddaC neurons show mild defect at early-third instar
stage ………61
Figure 11. Consituitve activated PI3K suppresses ARMS-RNAi mediated defects in
ddaC ………63
Figure 12. S6kKQ and ARMS-RNAi show synergistic effects on dendritic
morphogenesis ………66
Figure 13. The effect of erk loss of function (rl1) was too weak to have a
conclusion………69
Figure 14. Eph and ARMS could be in the same pathway to regulate dendritic
complexity ………72
Figure 15. Ephrin did not affect ARMS in ddaC ………75
Tables
Table 1. List of fly stocks ………78
Table 2. Primers for RT-PCR ………80
dc.language.isoen
dc.subject磷脂醯肌醇激&#37238zh_TW
dc.subject果蠅zh_TW
dc.subject樹突複雜度zh_TW
dc.subject富含連續性錨蛋白穿膜構造zh_TW
dc.subject絲裂原活化蛋白激&#37238zh_TW
dc.subject背部樹枝狀樹突Czh_TW
dc.subjectddaCen
dc.subjectEphrinen
dc.subjectEphen
dc.subjectMAPKen
dc.subjectPI3Ken
dc.subjectARMSen
dc.subjectDrosophilaen
dc.subjectdendritic complexityen
dc.title利用果蠅遺傳學探討ARMS在神經系統發育中的功能zh_TW
dc.titleExploration of ARMS function in the development of nervous system using Drosophila geneticsen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.coadvisor李秀香(Hsiu-Hsiang Lee)
dc.contributor.oralexamcommittee吳君泰(June-Tai Wu),皮海薇(Hai-Wei Pi)
dc.subject.keyword富含連續性錨蛋白穿膜構造,果蠅,背部樹枝狀樹突C,樹突複雜度,磷脂醯肌醇激&#37238,絲裂原活化蛋白激&#37238,zh_TW
dc.subject.keywordARMS,Drosophila,ddaC,dendritic complexity,PI3K,MAPK,Eph,Ephrin,en
dc.relation.page80
dc.rights.note有償授權
dc.date.accepted2011-08-10
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept病理學研究所zh_TW
顯示於系所單位:病理學科所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
5.85 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved