請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38026
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 賴明宗 | |
dc.contributor.author | Ya-Ting Chuang | en |
dc.contributor.author | 莊雅婷 | zh_TW |
dc.date.accessioned | 2021-06-13T15:57:21Z | - |
dc.date.available | 2010-08-13 | |
dc.date.copyright | 2008-08-13 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-06-06 | |
dc.identifier.citation | Aarvak, T., Chabaud, M., Miossec, P., and Natvig, J.B. (1999). IL-17 is produced by some proinflammatory Th1/Th0 cells but not by Th2 cells. J. Immunol. 162, 1246-1251.
Aggarwal, S., Ghilardi, N., Xie, M.H., de Sauvage, F.J., and Gurney, A.L. (2003). Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J. Biol. Chem. 278, 1910-1914. Altman, A., Isakov, N., and Baier, G. (2000). Protein kinase Ctheta: a new essential superstar on the T-cell stage. Immunol. Today 21, 567-573. Anderson, K., Fitzgerald, M., Dupont, M., Wang, T., Paz, N., Dorsch, M., Healy, A., Xu, Y., Ocain, T., Schopf, L., et al. (2006). Mice deficient in PKC theta demonstrate impaired in vivo T cell activation and protection from T cell-mediated inflammatory diseases. Autoimmunity 39, 469-478. Anjum, R., Roux, P.P., Ballif, B.A., Gygi, S.P., and Blenis, J. (2005). The tumor suppressor DAP kinase is a target of RSK-mediated survival signaling. Curr. Biol. 15, 1762-1767. Baier, G., Telford, D., Giampa, L., Coggeshall, K.M., Baier-Bitterlich, G., Isakov, N., and Altman, A. (1993). Molecular cloning and characterization of PKC theta, a novel member of the protein kinase C (PKC) gene family expressed predominantly in hematopoietic cells. J. Biol. Chem. 268, 4997-5004. Barouch-Bentov, R., Lemmens, E.E., Hu, J., Janssen, E.M., Droin, N.M., Song, J., Schoenberger, S.P., and Altman, A. (2005). Protein kinase C-theta is an early survival factor required for differentiation of effector CD8+ T cells. J. Immunol. 175, 5126-5134. Berg-Brown, N.N., Gronski, M.A., Jones, R.G., Elford, A.R., Deenick, E.K., Odermatt, B., Littman, D.R., and Ohashi, P.S. (2004). PKCtheta signals activation versus tolerance in vivo. J. Exp. Med. 199, 743-752. Bettelli, E., Carrier, Y., Gao, W., Korn, T., Strom, T.B., Oukka, M., Weiner, H.L., and Kuchroo, V.K. (2006). Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235-238. Bi, K., Tanaka, Y., Coudronniere, N., Sugie, K., Hong, S., van Stipdonk, M.J., and Altman, A. (2001). Antigen-induced translocation of PKC-theta to membrane rafts is required for T cell activation. Nat. Immunol. 2, 556-563. Bialik, S., Bresnick, A.R., and Kimchi, A. (2004). DAP-kinase-mediated morphological changes are localization dependent and involve myosin-II phosphorylation. Cell Death Diff. 11, 631-644. Bialik, S., and Kimchi, A. (2004). DAP-kinase as a target for drug design in cancer and diseases associated with accelerated cell death. Sem. Cancer Biol. 14, 283-294. Bialik, S., and Kimchi, A. (2006). The death-associated protein kinases: structure, function, and beyond. Annu. Rev. Biochem. 75, 189-210. Billadeau, D.D., and Burkhardt, J.K. (2006). Regulation of cytoskeletal dynamics at the immune synapse: new stars join the actin troupe. Traffic (Copenhagen, Denmark) 7, 1451-1460. Boerth, N.J., Sadler, J.J., Bauer, D.E., Clements, J.L., Gheith, S.M., and Koretzky, G.A. (2000). Recruitment of SLP-76 to the membrane and glycolipid-enriched membrane microdomains replaces the requirement for linker for activation of T cells in T cell receptor signaling. J. Exp. Med. 192, 1047-1058. Boothby, M.R., Mora, A.L., Scherer, D.C., Brockman, J.A., and Ballard, D.W. (1997). Perturbation of the T lymphocyte lineage in transgenic mice expressing a constitutive repressor of nuclear factor (NF)-kappaB. J. Exp. Med. 185, 1897-1907. Chan, A.C., Irving, B.A., Fraser, J.D., and Weiss, A. (1991). The zeta chain is associated with a tyrosine kinase and upon T-cell antigen receptor stimulation associates with ZAP-70, a 70-kDa tyrosine phosphoprotein. Proc. Natl. Acad. Sci. U. S. A. 88, 9166-9170. Chan, A.C., Iwashima, M., Turck, C.W., and Weiss, A. (1992). ZAP-70: a 70 kd protein-tyrosine kinase that associates with the TCR zeta chain. Cell 71, 649-662. Chan, A.W., Chan, M.W., Lee, T.L., Ng, E.K., Leung, W.K., Lau, J.Y., Tong, J.H., Chan, F.K., and To, K.F. (2005). Promoter hypermethylation of Death-associated protein-kinase gene associated with advance stage gastric cancer. Oncol. Rep. 13, 937-941. Chen, C.H., Wang, W.J., Kuo, J.C., Tsai, H.C., Lin, J.R., Chang, Z.F., and Chen, R.H. (2005). Bidirectional signals transduced by DAPK-ERK interaction promote the apoptotic effect of DAPK. EMBO J. 24, 294-304. Chen, Z.J. (2005). Ubiquitin signalling in the NF-kappaB pathway. Nat. Cell Biol. 7, 758-765. Chu, D.H., Morita, C.T., and Weiss, A. (1998). The Syk family of protein tyrosine kinases in T-cell activation and development. Immunol. Rev. 165, 167-180. Citri, A., Harari, D., Shohat, G., Ramakrishnan, P., Gan, J., Lavi, S., Eisenstein, M., Kimchi, A., Wallach, D., Pietrokovski, S., et al. (2006). Hsp90 recognizes a common surface on client kinases. J. Biol. Chem. 281, 14361-14369. Cohen, O., Feinstein, E., and Kimchi, A. (1997). DAP-kinase is a Ca2+/calmodulin-dependent, cytoskeletal-associated protein kinase, with cell death-inducing functions that depend on its catalytic activity. EMBO J. 16, 998-1008. Cohen, O., Inbal, B., Kissil, J.L., Raveh, T., Berissi, H., Spivak-Kroizaman, T., Feinstein, E., and Kimchi, A. (1999). DAP-kinase participates in TNF-alpha- and Fas-induced apoptosis and its function requires the death domain. J. Cell Biol. 146, 141-148. Cua, D.J., Sherlock, J., Chen, Y., Murphy, C.A., Joyce, B., Seymour, B., Lucian, L., To, W., Kwan, S., Churakova, T., et al. (2003). Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421, 744-748. Davis, M.M., Boniface, J.J., Reich, Z., Lyons, D., Hampl, J., Arden, B., and Chien, Y. (1998). Ligand recognition by alpha beta T cell receptors. Annu. Rev. Immunol. 16, 523-544. Deiss, L.P., Feinstein, E., Berissi, H., Cohen, O., and Kimchi, A. (1995). Identification of a novel serine/threonine kinase and a novel 15-kD protein as potential mediators of the gamma interferon-induced cell death. Genes & Develop. 9, 15-30. DeSilva, D.R., Feeser, W.S., Tancula, E.J., and Scherle, P.A. (1996). Anergic T cells are defective in both jun NH2-terminal kinase and mitogen-activated protein kinase signaling pathways. J. Exp. Med. 183, 2017-2023. DeSilva, D.R., Jones, E.A., Feeser, W.S., Manos, E.J., and Scherle, P.A. (1997). The p38 mitogen-activated protein kinase pathway in activated and anergic Th1 cells. Cell. Immunol. 180, 116-123. Dykstra, M., Cherukuri, A., Sohn, H.W., Tzeng, S.J., and Pierce, S.K. (2003). Location is everything: lipid rafts and immune cell signaling. Annu. Rev. Immunol. 21, 457-481. Esslinger, C.W., Wilson, A., Sordat, B., Beermann, F., and Jongeneel, C.V. (1997). Abnormal T lymphocyte development induced by targeted overexpression of IkappaB alpha. J. Immunol. 158, 5075-5078. Fang, L.W., Tai, T.S., Yu, W.N., Liao, F., and Lai, M.Z. (2004). Phosphatidylinositide 3-kinase priming couples c-FLIP to T cell activation. J. Biol. Chem. 279, 13-18. Fields, P., Fitch, F.W., and Gajewski, T.F. (1996). Control of T lymphocyte signal transduction through clonal anergy. J. Mol. Med. 74, 673-683. Garboczi, D.N., Ghosh, P., Utz, U., Fan, Q.R., Biddison, W.E., and Wiley, D.C. (1996). Structure of the complex between human T-cell receptor, viral peptide and HLA-A2. Nature 384, 134-141. Ghaffari-Tabrizi, N., Bauer, B., Villunger, A., Baier-Bitterlich, G., Altman, A., Utermann, G., Uberall, F., and Baier, G. (1999). Protein kinase Ctheta, a selective upstream regulator of JNK/SAPK and IL-2 promoter activation in Jurkat T cells. Eur. J. Immunol. 29, 132-142. Giannoni, F., Lyon, A.B., Wareing, M.D., Dias, P.B., and Sarawar, S.R. (2005). Protein kinase C theta is not essential for T-cell-mediated clearance of murine gammaherpesvirus 68. J. Virol. 79, 6808-6813. Gonzalez-Gomez, P., Bello, M.J., Arjona, D., Lomas, J., Alonso, M.E., De Campos, J.M., Vaquero, J., Isla, A., Gutierrez, M., and Rey, J.A. (2003). Promoter hypermethylation of multiple genes in astrocytic gliomas. Int. J. Oncol. 22, 601-608. Gran, B., Zhang, G.X., Yu, S., Li, J., Chen, X.H., Ventura, E.S., Kamoun, M., and Rostami, A. (2002). IL-12p35-deficient mice are susceptible to experimental autoimmune encephalomyelitis: evidence for redundancy in the IL-12 system in the induction of central nervous system autoimmune demyelination. J. Immunol. 169, 7104-7110. Gutcher, I., Urich, E., Wolter, K., Prinz, M., and Becher, B. (2006). Interleukin 18-independent engagement of interleukin 18 receptor-alpha is required for autoimmune inflammation. Nat. Immunol. 7, 946-953. Hasegawa, M., Nelson, H.H., Peters, E., Ringstrom, E., Posner, M., and Kelsey, K.T. (2002). Patterns of gene promoter methylation in squamous cell cancer of the head and neck. Oncogene 21, 4231-4236. Hayden, M.S., and Ghosh, S. (2004). Signaling to NF-kappaB. Genes & Develop. 18, 2195-2224. He, H.T., Lellouch, A., and Marguet, D. (2005). Lipid rafts and the initiation of T cell receptor signaling. Sem. Immunol. 17, 23-33. Heissmeyer, V., Macian, F., Im, S.H., Varma, R., Feske, S., Venuprasad, K., Gu, H., Liu, Y.C., Dustin, M.L., and Rao, A. (2004). Calcineurin imposes T cell unresponsiveness through targeted proteolysis of signaling proteins. Nat. Immunol. 5, 255-265. Hindley, A., and Kolch, W. (2007). Raf-1 and B-Raf promote protein kinase C theta interaction with BAD. Cell. Signal. 19, 547-555. Hofstetter, H.H., Ibrahim, S.M., Koczan, D., Kruse, N., Weishaupt, A., Toyka, K.V., and Gold, R. (2005). Therapeutic efficacy of IL-17 neutralization in murine experimental autoimmune encephalomyelitis. Cell. Immunol. 237, 123-130. Inbal, B., Cohen, O., Polak-Charcon, S., Kopolovic, J., Vadai, E., Eisenbach, L., and Kimchi, A. (1997). DAP kinase links the control of apoptosis to metastasis. Nature 390, 180-184. Inbal, B., Shani, G., Cohen, O., Kissil, J.L., and Kimchi, A. (2000). Death-associated protein kinase-related protein 1, a novel serine/threonine kinase involved in apoptosis. Mol. Cell. Biol. 20, 1044-1054. Iwashima, M., Irving, B.A., van Oers, N.S., Chan, A.C., and Weiss, A. (1994). Sequential interactions of the TCR with two distinct cytoplasmic tyrosine kinases. Science 263, 1136-1139. Jacobson, K., Mouritsen, O.G., and Anderson, R.G. (2007). Lipid rafts: at a crossroad between cell biology and physics. Nat. Cell Biol. 9, 7-14. Janes, P.W., Ley, S.C., Magee, A.I., and Kabouridis, P.S. (2000). The role of lipid rafts in T cell antigen receptor (TCR) signalling. Sem. Immunol. 12, 23-34. Jang, C.W., Chen, C.H., Chen, C.C., Chen, J.Y., Su, Y.H., and Chen, R.H. (2002). TGF-beta induces apoptosis through Smad-mediated expression of DAP-kinase. Nat. Cell Biol. 4, 51-58. Jenkins, M.K., Chen, C.A., Jung, G., Mueller, D.L., and Schwartz, R.H. (1990). Inhibition of antigen-specific proliferation of type 1 murine T cell clones after stimulation with immobilized anti-CD3 monoclonal antibody. J. Immunol. 144, 16-22. Jin, Y., Blue, E.K., Dixon, S., Hou, L., Wysolmerski, R.B., and Gallagher, P.J. (2001). Identification of a new form of death-associated protein kinase that promotes cell survival. J. Biol. Chem. 276, 39667-39678. Jin, Y., Blue, E.K., Dixon, S., Shao, Z., and Gallagher, P.J. (2002). A death-associated protein kinase (DAPK)-interacting protein, DIP-1, is an E3 ubiquitin ligase that promotes tumor necrosis factor-induced apoptosis and regulates the cellular levels of DAPK. J. Biol. Chem. 277, 46980-46986. Jin, Y., Blue, E.K., and Gallagher, P.J. (2006). Control of death-associated protein kinase (DAPK) activity by phosphorylation and proteasomal degradation. J. Biol. Chem. 281, 39033-39040. Kabouridis, P.S., Janzen, J., Magee, A.L., and Ley, S.C. (2000). Cholesterol depletion disrupts lipid rafts and modulates the activity of multiple signaling pathways in T lymphocytes. Eur. J. Immunol. 30, 954-963. Kabouridis, P.S., Magee, A.I., and Ley, S.C. (1997). S-acylation of LCK protein tyrosine kinase is essential for its signalling function in T lymphocytes. EMBO J. 16, 4983-4998. Kang, S.M., Beverly, B., Tran, A.C., Brorson, K., Schwartz, R.H., and Lenardo, M.J. (1992). Transactivation by AP-1 is a molecular target of T cell clonal anergy. Science 257, 1134-1138. Karin, M., and Lin, A. (2002). NF-kappaB at the crossroads of life and death. Nat. Immunol. 3, 221-227. Katzenellenbogen, R.A., Baylin, S.B., and Herman, J.G. (1999). Hypermethylation of the DAP-kinase CpG island is a common alteration in B-cell malignancies. Blood 93, 4347-4353. Kawai, T., Matsumoto, M., Takeda, K., Sanjo, H., and Akira, S. (1998). ZIP kinase, a novel serine/threonine kinase which mediates apoptosis. Mol. Cell. Biol. 18, 1642-1651. Kawai, T., Nomura, F., Hoshino, K., Copeland, N.G., Gilbert, D.J., Jenkins, N.A., and Akira, S. (1999). Death-associated protein kinase 2 is a new calcium/calmodulin- dependent protein kinase that signals apoptosis through its catalytic activity. Oncogene 18, 3471-3480. Kelliher, M.A., Grimm, S., Ishida, Y., Kuo, F., Stanger, B.Z., and Leder, P. (1998). The death domain kinase RIP mediates the TNF-induced NF-kappaB signal. Immunity 8, 297-303. Kim, D.H., Nelson, H.H., Wiencke, J.K., Christiani, D.C., Wain, J.C., Mark, E.J., and Kelsey, K.T. (2001). Promoter methylation of DAP-kinase: association with advanced stage in non-small cell lung cancer. Oncogene 20, 1765-1770. Kissil, J.L., Feinstein, E., Cohen, O., Jones, P.A., Tsai, Y.C., Knowles, M.A., Eydmann, M.E., and Kimchi, A. (1997). DAP-kinase loss of expression in various carcinoma and B-cell lymphoma cell lines: possible implications for role as tumor suppressor gene. Oncogene 15, 403-407. Kogel, D., Bierbaum, H., Preuss, U., and Scheidtmann, K.H. (1999). C-terminal truncation of Dlk/ZIP kinase leads to abrogation of nuclear transport and high apoptotic activity. Oncogene 18, 7212-7218. Kogel, D., Plottner, O., Landsberg, G., Christian, S., and Scheidtmann, K.H. (1998). Cloning and characterization of Dlk, a novel serine/threonine kinase that is tightly associated with chromatin and phosphorylates core histones. Oncogene 17, 2645-2654. Komiyama, Y., Nakae, S., Matsuki, T., Nambu, A., Ishigame, H., Kakuta, S., Sudo, K., and Iwakura, Y. (2006). IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J. Immunol. 177, 566-573. Kosugi, A., Sakakura, J., Yasuda, K., Ogata, M., and Hamaoka, T. (2001). Involvement of SHP-1 tyrosine phosphatase in TCR-mediated signaling pathways in lipid rafts. Immunity 14, 669-680. Krakowski, M., and Owens, T. (1996). Interferon-gamma confers resistance to experimental allergic encephalomyelitis. Eur. J. Immunol. 26, 1641-1646. Kuo, J.C., Lin, J.R., Staddon, J.M., Hosoya, H., and Chen, R.H. (2003). Uncoordinated regulation of stress fibers and focal adhesions by DAP kinase. J. Cell Sci. 116, 4777-4790. Kuo, J.C., Wang, W.J., Yao, C.C., Wu, P.R., and Chen, R.H. (2006). The tumor suppressor DAPK inhibits cell motility by blocking the integrin-mediated polarity pathway. J. Cell Biol. 172, 619-631. Langlet, C., Bernard, A.M., Drevot, P., and He, H.T. (2000). Membrane rafts and signaling by the multichain immune recognition receptors. Curr. Opin. Immunol. 12, 250-255. Langrish, C.L., Chen, Y., Blumenschein, W.M., Mattson, J., Basham, B., Sedgwick, J.D., McClanahan, T., Kastelein, R.A., and Cua, D.J. (2005). IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 201, 233-240. Lee, K.Y., D'Acquisto, F., Hayden, M.S., Shim, J.H., and Ghosh, S. (2005). PDK1 nucleates T cell receptor-induced signaling complex for NF-kappaB activation. Science 308, 114-118. Li, M.O., Wan, Y.Y., and Flavell, R.A. (2007). T cell-produced transforming growth factor-beta1 controls T cell tolerance and regulates Th1- and Th17-cell differentiation. Immunity 26, 579-591. Li, Q., and Verma, I.M. (2002). NF-kappaB regulation in the immune system. Nat. Rev. Immunol. 2, 725-734. Lin, J., Weiss, A., and Finco, T.S. (1999). Localization of LAT in glycolipid-enriched microdomains is required for T cell activation. J. Biol. Chem. 274, 28861-28864. Lin, Y., Stevens, C., and Hupp, T. (2007). Identification of a dominant negative functional domain on DAPK-1 that degrades DAPK-1 protein and stimulates TNFR-1-mediated apoptosis. J. Biol. Chem. 282, 16792-16802. Liu, Y.C. (2004). Ubiquitin ligases and the immune response. Annu. Rev. Immunol. 22, 81-127. Llambi, F., Lourenco, F.C., Gozuacik, D., Guix, C., Pays, L., Del Rio, G., Kimchi, A., and Mehlen, P. (2005). The dependence receptor UNC5H2 mediates apoptosis through DAP-kinase. EMBO J. 24, 1192-1201. Lock, C., Hermans, G., Pedotti, R., Brendolan, A., Schadt, E., Garren, H., Langer-Gould, A., Strober, S., Cannella, B., Allard, J., et al. (2002). Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat. Med. 8, 500-508. Loh, C., Carew, J.A., Kim, J., Hogan, P.G., and Rao, A. (1996). T-cell receptor stimulation elicits an early phase of activation and a later phase of deactivation of the transcription factor NFAT1. Mol. Cell. Biol. 16, 3945-3954. Macian, F., Garcia-Cozar, F., Im, S.H., Horton, H.F., Byrne, M.C., and Rao, A. (2002). Transcriptional mechanisms underlying lymphocyte tolerance. Cell 109, 719-731. Macian, F., Im, S.H., Garcia-Cozar, F.J., and Rao, A. (2004). T-cell anergy. Curr. Opin. Immunol. 16, 209-216. Madden, D.R. (1995). The three-dimensional structure of peptide-MHC complexes. Annu. Rev. Immunol. 13, 587-622. Mangan, P.R., Harrington, L.E., O'Quinn, D.B., Helms, W.S., Bullard, D.C., Elson, C.O., Hatton, R.D., Wahl, S.M., Schoeb, T.R., and Weaver, C.T. (2006). Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 441, 231-234. Manicassamy, S., Gupta, S., Huang, Z., and Sun, Z. (2006). Protein kinase C-theta-mediated signals enhance CD4+ T cell survival by up-regulating Bcl-xL. J. Immunol. 176, 6709-6716. Mao, J., Qiao, X., Luo, H., and Wu, J. (2006). Transgenic drak2 overexpression in mice leads to increased T cell apoptosis and compromised memory T cell development. J. Biol. Chem. 281, 12587-12595. Marsland, B.J., and Kopf, M. (2008). T-cell fate and function: PKC-theta and beyond. Trends Immunol. 29, 179-185. Marsland, B.J., Nembrini, C., Grun, K., Reissmann, R., Kurrer, M., Leipner, C., and Kopf, M. (2007). TLR ligands act directly upon T cells to restore proliferation in the absence of protein kinase C-theta signaling and promote autoimmune myocarditis. J. Immunol. 178, 3466-3473. Marsland, B.J., Nembrini, C., Schmitz, N., Abel, B., Krautwald, S., Bachmann, M.F., and Kopf, M. (2005). Innate signals compensate for the absence of PKC-{theta} during in vivo CD8(+) T cell effector and memory responses. Proc. Natl. Acad. Sci. U. S. A. 102, 14374-14379. Marsland, B.J., Soos, T.J., Spath, G., Littman, D.R., and Kopf, M. (2004). Protein kinase C theta is critical for the development of in vivo T helper (Th)2 cell but not Th1 cell responses. J. Exp. Med. 200, 181-189. Matsumoto, H., Nagao, M., Ogawa, S., Kanehiro, H., Hisanaga, M., Ko, S., Ikeda, N., Fujii, H., Koyama, F., Mukogawa, T., et al. (2003). Prognostic significance of death-associated protein-kinase expression in hepatocellular carcinomas. Anticancer Res. 23, 1333-1341. Matsumoto, R., Wang, D., Blonska, M., Li, H., Kobayashi, M., Pappu, B., Chen, Y., Wang, D., and Lin, X. (2005). Phosphorylation of CARMA1 plays a critical role in T Cell receptor-mediated NF-kappaB activation. Immunity 23, 575-585. Matusevicius, D., Kivisakk, P., He, B., Kostulas, N., Ozenci, V., Fredrikson, S., and Link, H. (1999). Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple sclerosis. Multi. Sclerosis 5, 101-104. McGargill, M.A., Wen, B.G., Walsh, C.M., and Hedrick, S.M. (2004). A deficiency in Drak2 results in a T cell hypersensitivity and an unexpected resistance to autoimmunity. Immunity 21, 781-791. Mondino, A., Whaley, C.D., DeSilva, D.R., Li, W., Jenkins, M.K., and Mueller, D.L. (1996). Defective transcription of the IL-2 gene is associated with impaired expression of c-Fos, FosB, and JunB in anergic T helper 1 cells. J. Immunol. 157, 2048-2057. Monks, C.R., Freiberg, B.A., Kupfer, H., Sciaky, N., and Kupfer, A. (1998). Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395, 82-86. Monks, C.R., Kupfer, H., Tamir, I., Barlow, A., and Kupfer, A. (1997). Selective modulation of protein kinase C-theta during T-cell activation. Nature 385, 83-86. Murphy, C.A., Langrish, C.L., Chen, Y., Blumenschein, W., McClanahan, T., Kastelein, R.A., Sedgwick, J.D., and Cua, D.J. (2003). Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J. Exp. Med. 198, 1951-1957. Narayan, G., Arias-Pulido, H., Koul, S., Vargas, H., Zhang, F.F., Villella, J., Schneider, A., Terry, M.B., Mansukhani, M., and Murty, V.V. (2003). Frequent promoter methylation of CDH1, DAPK, RARB, and HIC1 genes in carcinoma of cervix uteri: its relationship to clinical outcome. Mol. Cancer 2, 24. Ng, M.H., To, K.W., Lo, K.W., Chan, S., Tsang, K.S., Cheng, S.H., and Ng, H.K. (2001). Frequent death-associated protein kinase promoter hypermethylation in multiple myeloma. Clin. Cancer Res. 7, 1724-1729. Nicoletti, I., Migliorati, G., Pagliacci, M.C., Grignani, F., and Riccardi, C. (1991). A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J. Immunol. Methods 139, 271-279. O'Garra, A., Steinman, L., and Gijbels, K. (1997). CD4+ T-cell subsets in autoimmunity. Curr. Opin. Immunol. 9, 872-883. Page, G., Kogel, D., Rangnekar, V., and Scheidtmann, K.H. (1999). Interaction partners of Dlk/ZIP kinase: co-expression of Dlk/ZIP kinase and Par-4 results in cytoplasmic retention and apoptosis. Oncogene 18, 7265-7273. Pelled, D., Raveh, T., Riebeling, C., Fridkin, M., Berissi, H., Futerman, A.H., and Kimchi, A. (2002). Death-associated protein (DAP) kinase plays a central role in ceramide-induced apoptosis in cultured hippocampal neurons. J. Biol. Chem. 277, 1957-1961. Perez, V.L., Van Parijs, L., Biuckians, A., Zheng, X.X., Strom, T.B., and Abbas, A.K. (1997). Induction of peripheral T cell tolerance in vivo requires CTLA-4 engagement. Immunity 6, 411-417. Raveh, T., Droguett, G., Horwitz, M.S., DePinho, R.A., and Kimchi, A. (2001). DAP kinase activates a p19ARF/p53-mediated apoptotic checkpoint to suppress oncogenic transformation. Nat. Cell Biol. 3, 1-7. Raveh, T., and Kimchi, A. (2001). DAP kinase-a proapoptotic gene that functions as a tumor suppressor. Exp. Cell Res. 264, 185-192. Reth, M. (1989). Antigen receptor tail clue. Nature 338, 383-384. Russo, A.L., Thiagalingam, A., Pan, H., Califano, J., Cheng, K.H., Ponte, J.F., Chinnappan, D., Nemani, P., Sidransky, D., and Thiagalingam, S. (2005). Differential DNA hypermethylation of critical genes mediates the stage-specific tobacco smoke-induced neoplastic progression of lung cancer. Clin. Cancer Res. 11, 2466-2470. Saibil, S.D., Deenick, E.K., and Ohashi, P.S. (2007a). The sound of silence: modulating anergy in T lymphocytes. Curr. Opin. Immunol. 19, 658-664. Saibil, S.D., Jones, R.G., Deenick, E.K., Liadis, N., Elford, A.R., Vainberg, M.G., Baerg, H., Woodgett, J.R., Gerondakis, S., and Ohashi, P.S. (2007b). CD4+ and CD8+ T cell survival is regulated differentially by protein kinase Ctheta, c-Rel, and protein kinase B. J. Immunol. 178, 2932-2939. Salek-Ardakani, S., So, T., Halteman, B.S., Altman, A., and Croft, M. (2004). Differential regulation of Th2 and Th1 lung inflammatory responses by protein kinase C theta. J. Immunol. 173, 6440-6447. Salek-Ardakani, S., So, T., Halteman, B.S., Altman, A., and Croft, M. (2005). Protein kinase Ctheta controls Th1 cells in experimental autoimmune encephalomyelitis. J. Immunol. 175, 7635-7641. Samelson, L.E. (2002). Signal transduction mediated by the T cell antigen receptor: the role of adapter proteins. Annu. Rev. Immunol. 20, 371-394. Sanjo, H., Kawai, T., and Akira, S. (1998). DRAKs, novel serine/threonine kinases related to death-associated protein kinase that trigger apoptosis. J. Biol. Chem. 273, 29066-29071. Schmidt-Supprian, M., Courtois, G., Tian, J., Coyle, A.J., Israel, A., Rajewsky, K., and Pasparakis, M. (2003). Mature T cells depend on signaling through the IKK complex. Immunity 19, 377-389. Schwartz, R.H. (2003). T cell anergy. Annu. Rev. Immunol. 21, 305-334. Shamloo, M., Soriano, L., Wieloch, T., Nikolich, K., Urfer, R., and Oksenberg, D. (2005). Death-associated protein kinase is activated by dephosphorylation in response to cerebral ischemia. J. Biol. Chem. 280, 42290-42299. Shang, T., Joseph, J., Hillard, C.J., and Kalyanaraman, B. (2005). Death-associated protein kinase as a sensor of mitochondrial membrane potential: role of lysosome in mitochondrial toxin-induced cell death. J. Biol. Chem. 280, 34644-34653. Shani, G., Marash, L., Gozuacik, D., Bialik, S., Teitelbaum, L., Shohat, G., and Kimchi, A. (2004). Death-associated protein kinase phosphorylates ZIP kinase, forming a unique kinase hierarchy to activate its cell death functions. Mol. Cell. Biol. 24, 8611-8626. Shimonkevitz, R., Kappler, J., Marrack, P., and Grey, H. (1983). Antigen recognition by H-2-restricted T cells. I. Cell-free antigen processing. J. Exp. Med. 158, 303-316. Shohat, G., Spivak-Kroizman, T., Cohen, O., Bialik, S., Shani, G., Berrisi, H., Eisenstein, M., and Kimchi, A. (2001). The pro-apoptotic function of death-associated protein kinase is controlled by a unique inhibitory autophosphorylation-based mechanism. J. Biol. Chem. 276, 47460-47467. Siebenlist, U., Brown, K., and Claudio, E. (2005). Control of lymphocyte development by nuclear factor-kappaB. Nat. Rev. Immunol. 5, 435-445. Silverman, N., and Maniatis, T. (2001). NF-kappaB signaling pathways in mammalian and insect innate immunity. Genes & Develop. 15, 2321-2342. Simpson, D.J., Clayton, R.N., and Farrell, W.E. (2002). Preferential loss of Death Associated Protein kinase expression in invasive pituitary tumours is associated with either CpG island methylation or homozygous deletion. Oncogene 21, 1217-1224. Steinman, L. (2007). A brief history of T(H)17, the first major revision in the T(H)1/T(H)2 hypothesis of T cell-mediated tissue damage. Nat. Med. 13, 139-145. Stevens, C., Lin, Y., Sanchez, M., Amin, E., Copson, E., White, H., Durston, V., Eccles, D.M., and Hupp, T. (2007). A germ line mutation in the death domain of DAPK-1 inactivates ERK-induced apoptosis. J. Biol. Chem. 282, 13791-13803. Stoffel, B., Bauer, P., Nix, M., Deres, K., and Stoffel, W. (1998). Ceramide-independent CD28 and TCR signaling but reduced IL-2 secretion in T cells of acid sphingomyelinase-deficient mice. Eur. J. Immunol. 28, 874-880. Subczynski, W.K., and Kusumi, A. (2003). Dynamics of raft molecules in the cell and artificial membranes: approaches by pulse EPR spin labeling and single molecule optical microscopy. Biochimica et biophysica acta 1610, 231-243. Sun, Z., Arendt, C.W., Ellmeier, W., Schaeffer, E.M., Sunshine, M.J., Gandhi, L., Annes, J., Petrzilka, D., Kupfer, A., Schwartzberg, P.L., et al. (2000). PKC-theta is required for TCR-induced NF-kappaB activation in mature but not immature T lymphocytes. Nature 404, 402-407. Suzuki, N., Suzuki, S., Millar, D.G., Unno, M., Hara, H., Calzascia, T., Yamasaki, S., Yokosuka, T., Chen, N.J., Elford, A.R., et al. (2006). A critical role for the innate immune signaling molecule IRAK-4 in T cell activation. Science 311, 1927-1932. Tada, Y., Wada, M., Taguchi, K., Mochida, Y., Kinugawa, N., Tsuneyoshi, M., Naito, S., and Kuwano, M. (2002). The association of death-associated protein kinase hypermethylation with early recurrence in superficial bladder cancers. Cancer Res. 62, 4048-4053. Tan, S.L., Zhao, J., Bi, C., Chen, X.C., Hepburn, D.L., Wang, J., Sedgwick, J.D., Chintalacharuvu, S.R., and Na, S. (2006). Resistance to experimental autoimmune encephalomyelitis and impaired IL-17 production in protein kinase C theta-deficient mice. J. Immunol. 176, 2872-2879. Tavano, R., Contento, R.L., Baranda, S.J., Soligo, M., Tuosto, L., Manes, S., and Viola, A. (2006). CD28 interaction with filamin-A controls lipid raft accumulation at the T-cell immunological synapse. Nat. Cell Biol. 8, 1270-1276. Tavano, R., Gri, G., Molon, B., Marinari, B., Rudd, C.E., Tuosto, L., and Viola, A. (2004). CD28 and lipid rafts coordinate recruitment of Lck to the immunological synapse of human T lymphocytes. J. Immunol. 173, 5392-5397. Teunissen, M.B., Koomen, C.W., de Waal Malefyt, R., Wierenga, E.A., and Bos, J.D. (1998). Interleukin-17 and interferon-gamma synergize in the enhancement of proinflammatory cytokine production by human keratinocytes. J. Invest. Dermatol. 111, 645-649. Thome, M., and Tschopp, J. (2003). TCR-induced NF-kappaB activation: a crucial role for Carma1, Bcl10 and MALT1. Trends Immunol. 24, 419-424. Tran, E.H., Prince, E.N., and Owens, T. (2000). IFN-gamma shapes immune invasion of the central nervous system via regulation of chemokines. J. Immunol. 164, 2759-2768. Van Eldik, L.J. (2002). Structure and enzymology of a death-associated protein kinase. Trends Phar. Sci. 23, 302-304. van Leeuwen, J.E., and Samelson, L.E. (1999). T cell antigen-receptor signal transduction. Curr. Opin. Immunol. 11, 242-248. Veldhoen, M., Hocking, R.J., Atkins, C.J., Locksley, R.M., and Stockinger, B. (2006a). TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24, 179-189. Veldhoen, M., Hocking, R.J., Flavell, R.A., and Stockinger, B. (2006b). Signals mediated by transforming growth factor-beta initiate autoimmune encephalomyelitis, but chronic inflammation is needed to sustain disease. Nat. Immunol. 7, 1151-1156. Villalba, M., Bushway, P., and Altman, A. (2001). Protein kinase C-theta mediates a selective T cell survival signal via phosphorylation of BAD. J. Immunol. 166, 5955-5963. Viola, A., Schroeder, S., Sakakibara, Y., and Lanzavecchia, A. (1999). T lymphocyte costimulation mediated by reorganization of membrane microdomains. Science 283, 680-682. Voll, R.E., Jimi, E., Phillips, R.J., Barber, D.F., Rincon, M., Hayday, A.C., Flavell, R.A., and Ghosh, S. (2000). NF-kappa B activation by the pre-T cell receptor serves as a selective survival signal in T lymphocyte development. Immunity 13, 677-689. von Haller, P.D., Donohoe, S., Goodlett, D.R., Aebersold, R., and Watts, J.D. (2001). Mass spectrometric characterization of proteins extracted from Jurkat T cell detergent-resistant membrane domains. Proteomics 1, 1010-1021. Wang, C., Deng, L., Hong, M., Akkaraju, G.R., Inoue, J., and Chen, Z.J. (2001). TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412, 346-351. Wang, D., Matsumoto, R., You, Y., Che, T., Lin, X.Y., Gaffen, S.L., and Lin, X. (2004). CD3/CD28 costimulation-induced NF-kappaB activation is mediated by recruitment of protein kinase C-theta, Bcl10, and IkappaB kinase beta to the immunological synapse through CARMA1. Mol. Cell. Biol. 24, 164-171. Wang, W.J., Kuo, J.C. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38026 | - |
dc.description.abstract | DAPK 是一個具有多個功能區域的絲/酥胺酸(serine/threonine)蛋白質激脢,具有抑癌功能,同時也會參與各式的細胞凋亡系統。DAPK 的分子作用機制目前仍不太清楚,其在T 細胞中所扮演的角色也從未被探討過。我們發現DAPK 在T 細胞活化時亦會被活化,然後DAPK 會被分解。我們在T 細胞株和正常的小鼠T 細胞轉殖基因表現活化的DAPK 和會抑制DAPK 活性的變異體,或是利用siRNA 降低DAPK 的表現,發現DAPK 會負向調控T 細胞的活化。DAPK 會影響T 細胞活化後之增殖反應以及IL-2 的產生。同時也發現DAPK 的作用目標之ㄧ是TCR 刺激後引發的NF-κB 活化。在DAPK 被抑制或調降的T 細胞中,PKCθ磷酸化會增加,而進入核中之NF-κBp65 也提升。相對的,IL-1β和TNF-α刺激所引發的NF-κB活化並不受DAPK 影響。我們更進一步發現在T 細胞活化時,DAPK 只會選擇性地影響PKCθ、Bcl-10 和 IKK 等與NF-κB 活化相關的訊息分子進入脂質筏,但對於其他位於脂質筏的分子,例如LAT 和Lck,則沒有影響。
我們接著探討DAPK 是否藉著抑制T 細胞活化而參與T 細胞耐受性之產生。以A23187 增加鈣離子濃度在體外誘導T 細胞去活化,或以靜脈注射CD3 抗體到小鼠體內直接誘導T 細胞去活化的方式,都可以發現在去活化的T 細胞,DAPKmRNA 的表現增加。DAPK 的表現量與T 細胞去活化的程度成正比,顯示DAPK可能在T 細胞耐受度上扮演角色。此外,我們也發現表現活化的DAPK 會抑制小鼠誘發產生實驗性自身免疫性腦脊髓炎。我們的結果顯示了DAPK 是個新的T 細胞調控分子,會主導T 細胞活化以及TCR 刺激引發的NF-κB 活化。同時,DAPK亦可調節T 細胞去活化而維持活體免疫耐受度以避免自體免疫之產生。 | zh_TW |
dc.description.abstract | Death-associated protein kinase (DAP-kinase, DAPK) is a unique multi-domain kinase acting both as a tumor suppressor and an apoptosis inducer. The molecular mechanism underlying the effector function of DAPK is not fully understood, while the role of DAPK in T lymphocyte activation is mostly unknown. DAPK was activated after TCR stimulation, followed by DAPK degradation. Through the expression of a dominant negative form and a constitutively active form of DAPK in T cell lines and in transgenic mice, we found that DAPK negatively regulated T cell activation. DAPK markedly affected T cell proliferation and IL-2 production. We identified TCR-induced NF-κB activation as a target of DAPK. There was an increased PKCθ phosphorylation and an enhanced NF-κBp65 nuclear translocation in T cells with DAPK inhibited or down-regulated. In contrast, IL-1β- and TNF-α-triggered NF-κB activation was not affected by DAPK. We further found that DAPK selectively modulated the TCR-induced translocation of PKCθ, Bcl-10, and IKK into membrane rafts. Notably, the effect of DAPK on the raft entry was specific for NF-κB pathway, as other raft-associated molecules, such as LAT, were not affected. We further examined the possibility that, by negatively regulating T cell activation, DAPK contributes to the generation of T cell tolerance. DAPK mRNA expression was up-regulated when T cell anergy was induced either in vitro by calcium ionophore, or in vivo by intravenous administration of anti-CD3 antibody. There was a correlation between the amount of DAPK expression and the extent of T cell anergy, suggesting a role of DAPK in T cell tolerance induction. In addition, active DAPK transgene inhibited the induction and progression of autoimmune experimental autoimmune encephalomyelitis (EAE). Our results demonstrate that DAPK is a novel T cell regulator on TCR-activated NF-κB and T cell activation, and DAPK may contribute to maintenance of immune tolerance and avoidance of autoimmunity by promoting T cell anergy. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T15:57:21Z (GMT). No. of bitstreams: 1 ntu-97-D91449002-1.pdf: 3922263 bytes, checksum: cd981cb22171508b4d121890872e76fa (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 口試委員會審定書……………………………………………………… i
誌謝……………………………………………………………………… ii 中文摘要………………………………………………………………… iii 英文摘要………………………………………………………………… iv 第一章 緒論………………………………………………………..……. 1 一、 DAPK…………………………………………………………… 1 1. DAPK 之簡介…………………………………………………… 1 2. DAPK 之蛋白質結構…………………………………………….. 1 3. DAPK 的抑癌功能與促細胞凋亡活性…………………………... 3 二、 T 細胞活化……………………………………………………... 4 1. T 細胞活化的訊息傳遞…………………………………………... 4 2. PKCθ…………………………………………………………………6 3. 脂質筏與T 細胞活化的關係……………………………………. 7 三、 NF-κB 活化之訊息傳遞路徑………………………………….. 9 四、 T 細胞去活化…………………………………………………. 10 五、 研究動機與方向………………………………………………. 11 第二章 材料與方法…………………………………………………… 12 一、 細胞株與細胞培養……………………………………………. 12 二、 藥品與試劑……………………………………………………. 12 三、 抗體……………………………………………………………. 13 四、 質體之構築………………………………………………………13 1. pGC-YFP-DAPK、pGC-YFP-K42A 和pGC-YFP-ΔCAM 之構築…13 2. pSR-mDAPKsi 和pSR-mDAPKsim 之構築………………………14 3. pSR-hDAPKsi-1、pSR-hDAPKsi-2 和pSR-hDAPKsim 之構築… 14 4. CD2-K42A 和CD2-ΔCAM 之構築………………………………… 14 五、 質體DNA 的轉染……………………………………………… 15 1. Calcium phosphate 轉染法……………………………………… 15 2. 反轉錄病毒感染法…………………………………………………15 3. 電穿孔法……………………………………………………………16 六、 IL-2 產量分析………………………………………………… 16 七、 T 細胞增殖分析……………………………………………….. 17 八、 RNA 的純化…………………………………………………….. 17 九、 反轉錄與聚合酶連鎖反應…………………………………….. 17 十、 流式細胞儀分析……………………………………………….. 18 1. 細胞死亡測定…………………………………………………….. 18 2. 細胞表面染色分析……………………………………………….. 19 十一、 細胞萃取液的製備………………………………………….. 19 1. 全部細胞萃取液的製備………………………………………….. 19 2. 細胞質及細胞核萃取液的製備………………………………….. 19 十二、 西方墨點法………………………………………………….. 20 十三、 免疫沉澱法………………………………………………….. 20 十四、 電泳移動改變分析法……………………………………….. 20 1. 探子的製備……………………………………………………….. 21 2. 電泳移動改變分析……………………………………………….. 21 十五、 脂質筏的分離與純化……………………………………….. 21 十六、 X 光底片影像訊號強弱測量……………………………….. 22 十七、 T 細胞去活化的誘導……………………………………….. 22 1. 誘導AND 轉殖基因小鼠T 細胞的去活化……………………… 22 2. 抗小鼠CD3 抗體的靜脈注射誘導T 細胞去活化……………… 22 十八、 實驗性自身免疫性腦脊髓動物模式…………………………23 第三章 結果…………………………………………………………… 24 一、 T 細胞活化時DAPK 亦被活化而後分解……………………... 24 二、 DAPK 之持續活化變異體抑制T 細胞活化,而顯負性變異體則會增強T 細胞活化……………………………………………... 25 三、 利用siRNA 降低DAPK 的表現可增強T 細胞活化………..... 26 四、 [K42A]DAPK 和[ΔCAM]DAPK 兩種轉殖基因鼠的生產與表現………………………………………………………………... 27 五、 [K42A]DAPK 轉殖基因會增強T 細胞活化,而[ΔCAM]DAPK轉殖基因則會抑制T 細胞活化……………………………….. 28 六、 DAPK 抑制TCR 刺激所引發的NF-κB 活化……………….... 30 七、 DAPK 不影響TNF-α和IL-1β刺激所引發的NF-κB 活化…... 32 八、 抑制DAPK 活性可增加PKCθ、Bcl-10 和IKKα等訊息分子轉移進入脂質筏中的量……………………………………………... 32 九、 DAPK 在去活化T 細胞的表現增加…………………………... 33 1. 體外誘發AND 轉殖基因小鼠T 細胞之去活化……………… 33 2. 抗小鼠CD3 抗體(2C11)的靜脈注射在活體誘發T 細胞之去活化………………………………………………………………... 34 十、 [ΔCAM]DAPK 轉殖基因則會抑制實驗性自身免疫性腦脊髓炎的發病…………………………………………………………... 35 第四章 討論…………………………………………………………… 37 一、 DAPK 參與T 細胞之活化……………………………………… 37 二、DAPK 與DRAK2 在T 細胞中功能的異同…………………… 38 三、 DAPK 對NF-κB 活化之調控…………………………………. 39 四、DAPK 影響NFAT1 及NFAT2 之活化…………………………. 41 五、 DAPK 與T 細胞去活化的關係………………………………… 42 六、 DAPK 對自體免疫疾病的調控………………………………… 2 圖表…………………………………………………………………… 45 參考文獻……………………………………………………………… 85 附錄……………………………………………………………………103 | |
dc.language.iso | zh-TW | |
dc.title | DAP-kinase在T細胞活化的角色 | zh_TW |
dc.title | The Role of DAP-kinase in T Cell Activation | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 許秉寧,繆希椿,林琬琬,陳瑞華 | |
dc.subject.keyword | T細胞活化, | zh_TW |
dc.subject.keyword | DAP-kinase, | en |
dc.relation.page | 109 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-06-06 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 免疫學研究所 | zh_TW |
顯示於系所單位: | 免疫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 3.83 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。