請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37995完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張培仁 | |
| dc.contributor.author | Ling-Yi Ding | en |
| dc.contributor.author | 丁領億 | zh_TW |
| dc.date.accessioned | 2021-06-13T15:55:30Z | - |
| dc.date.available | 2016-09-08 | |
| dc.date.copyright | 2011-09-08 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-09 | |
| dc.identifier.citation | 1. P. Yen and C. Gu, Optics of liquid crystal displays 2nd edition, WILEY: New Jersey, US, pp.1-39, 2010.
2. 顧鴻壽,周本達,陳密,張德安,樊雨心,周宜衡,平面面板顯示器基本概論,高立圖書,民國93年。 3. 陳志強,LTPS低溫複晶矽顯示器技術,全華圖書,民國93年。 4. http://www.avsforum.com/avs-vb/showthread.php?t=798029 5. http://www.hdtvtest.co.uk/news/sony-xbr-mura-clouding-2007033142.htm 6. K. Taniguchi, K. Ueta and S. Tatsumi, “A mura detection method,” Pattern Recognition, Vol. 39, pp. 1044-1052, 2006. 7. H. S. Cho, D. Kwon, M. H. Lee, D. W. Kang, B. C. Kim, and S. J. Yu, “Influence of ball spacer size and density on liquid crystal margin of in-plane switching panel fabricate d by the inkjet process,” Japan Journal of Applied Physics, Vol. 49, pp. 05EC05-05EC05-3, 2010. 8. T. Nishio, T. Iwabuchi, H. Hamaguchi, and T. Kajita, “Photosensitive column spacer materials for liquid crystal display panels,” Journal of Photopolymer Science Technology, Vol. 18, No. 1. pp. 11-16, 2005. 9. B. J. Choi, S. V. Sreenivasan, S. Johnson, M. Colburn, and C. G. Wilson, “Design of orientation stages for step and flash imprint lithography,” Precision Engineering, Vol. 25, pp. 192-199, 2001. 10. D. Kwon, H. S. Cho, M. H. Lee, J. H. Lee, H. J. Seo, D. W. Kang, B. C. Kim, and S. J. Yu, “Study of improvement of scan mura in in-plane switching panel fabricated by the Inkjet Spacer Process,” Journal of Photopolymer Science Technology, Vol. 49, pp. 05EC06-05EC06-4, 2010. 11. J. Kim, T. J. Song, J. H. Kim, S. P. Cho, M. S. Yang, I. B. Kang, Y. K. Hwang, I. J. Chung, “Formation of the overcoat layer and column spacer for TFT-LCD using capillary force lithography,” Displays, Vol. 31, pp. 82-86, 2010. 12. J. H. Cho, Y. H. Kim, and H. K. Oh, “Improvement of column spacer uniformity in a TFT LCD panel,” Journal of the Korean Physics Society, Vol. 48, No. 2. pp. 240-245, 2006. 13. http://machinevision.iem.yzu.edu.tw/vision/thesis/94_Wu/95_Wu.htm 14. E. Winkler, Die Lehre von der Elastizitat und Festigikeit, Dominicus, Prague, 1867. 15. M. Hetenyi, Beams on Elastic Foundations : theory with applications in the fields of civil and mechanical engineering, The University of Michigan Press, Chicago, pp. 2-9, 1946. 16. http://www.me.ust.hk/~meqpsun/Notes/Chapter4%28202%29.PDF 17. K. Dems, R. H. Plaut, A. S. Banach, and L. W. Johnson, “Optimization of elastic foundation for minimum beam deflection,” International Journal of Solids and Structures, Vol. 23, pp. 1551-1562, 1987. 18. Z. Mróz and G. I. N. Rozvany, “Optimal design of structures with variable support conditions,” Journal of Optimization Theory and Applications, Vol. 15, pp. 85-101, 1975. 19. K. Dems, and R. H. Plaut, “Design of beams, plates and their elastic foundations for uniform foundation pressure,” Structural and Multidisciplinary Optimization, Vol. 2, No. 4. pp. 213-222, 1990. 20. D. Bojczuk and Z. Mróz, “On optimal design of supports in beam and frame structures,” Structural and Multidisciplinary Optimization, Vol. 16, No. 1. pp. 47-57, 1998. 21. P. Colajanni, G. Falsone, and A. Recupero, “Simplified formulation of solution for beams on Winkler foundation allowing discontinuities due to loads and constraints,” International Journal of Engineering Education, Vol. 25, No. 1. pp. 75-83, 2009. 22. http://www.inloughborough.com/news/001332/Loughborough%20MP%20misses%20debate%20on%20Loughborough%20Railway%20Station 23. http://bioenergy-today.blogspot.com/2011/04/blog-post.html 24. Y. S. Lee, H. S. Lee, Y. J. Choi, S. W. Byun, and W. T. Kim, “Optimization to minimize deflection of a large LCD glass plate with multi-simply supports,” International Journal of Modern Physics B, Vol. 20, Issue 25-27, pp. 4099-4104, 2006. 25. G. W. Jang, H. S. Shim, and Y. Y. Kim, “Optimization of support locations of beam and plate structures under self-weight by using a sprung structure model,” Journal of Mechanical Design, Vol. 131, pp. 021005-1-021005-11, 2009. 26. W. R. Powell, S. F. Hoysan, and B. K. Lee, “Computer Simulation of LCD Sheet Distortion Associated with Gravity Mura Defect,” SID Symposium Digest, Vol. 35, pp. 1605-1607, 2004. 27. http://www.pklt.com.tw/chinese/b4_maskproc.html 28. C. P. Yue and S. S. Wong, “Physical modeling of spiral inductors on silicon,” Transactions on Electron Devices, Vol. 47, No. 3, pp. 560-568, 2000. 29. T. P. Wang and H. Wang, “High-Q Micromachined Inductors for 10-to-30-GHz RFIC applications on low resistivity Si-substrate,” Proceedings of the 36th European Microwave Conference, Manchester, UK, September 10-15, 2006, pp. 56-59. 30. T. P. Wang, R. C. Liu, H. Y. Chang, L. H. Lu, and H. Wang, “A 22-GHz push-push CMOS oscillator using micromachined inductors,” Microwave and Wireless Components Letters, Vol.15, pp. 589-861, 2005. 31. T. Wang, Y.S. Lin, and S.S. Lu, “Micromachined 22 GHz PI filter by CMOS compatible ICP deep trench technology,” Electronics Letters, Vol. 43, Isse. 3, pp.398-399, 2007. 32. T. Wang, Y.S. Lin, and S.S. Lu, “An ultralow-loss and broadband micromachined RF inductor for RFIC input-matching applications,” Transactions on Electron Devices, Vol. 53, isse. 3, pp.568-570, 2006. 33. P. L. Huang, T. Wang, Y. S. Lin, S. S. Lu, Y. M. Teng, and G. W. Huang, “Micromachined 50GHz/60GHz phi filters by CMOS compatible ICP deep trench technology,” Microwave Optical Technology Letters, Vol. 50, pp. 3142-3146, 2008. 34. T. Wang, S. S. Lu, Y. S. Lin, Y. Z. Juang, G. W. Huana, “The RF characteristics of micromachined coplanar waveguide in 0.13 um CMOS technology by CMOS compatible ICP dry etching,” Microwave Optical Technology Letters, Vol. 51, pp. 2665-2668, 2009. 35. M. J. Yu, Y. J. Chan, L. H. Laih, and J. W. Hong, “Improved microwave performance of spiral inductors on Si substrates by chemically anodizing a porous silicon layer,” Microwave Optical Technology Letters, Vol. 26, pp.232-234, 2000. 36. K. Chong, Y. H. Xie, K. W. Yu, D. Huang, and M.-C. F. Chang, “High performance inductors integrated on porous silicon,” Electron Device Letters, Vol. 26, pp.93-95, 2005. 37. H. Contopanagos and A. G. Nassiopoulou, “Design and Simulation of Integrated Inductors on Porous Silicon in CMOS-compatible processes,” Solid-State Electronics, Vol. 50, pp.1283-1290, 2006. 38. H. Contopanagos, F. Zacharatos, and A.G. Nassiopoulou, “RF characterization and isolation properties of mesoporous Si by on-chip coplanar waveguide measurements,” Solid-State Electronics, Vol. 52, pp.1730-1740, 2008. 39. F. Zacharatos, H. F. Contopanagos, and A. G. Nassiopoulou, “Optimized porous Si microplate technology for on-chip local RF isolation,” Transactions on Electron Devices, Vol. 56, pp.2733-2738, 2009. 40. C. Li, H. L. Liao, C. Wang, J. Yin, R. Huang, and Y. Y. Wang, “High-Q integrated inductor using post-CMOS selectivity grown porous silicon (SGPS) technique RFIC applications,”Electron Device Letters, Vol. 28, pp.763-766, 2007. 41. C. Li, H. L. Liao, C. Wang, R. Huang, and Y. Y. Wang, “Effective crosstalk isolation with post-CMOS selectively grown porous silicon Technique for Radio Frequency System-on-Chip (SOC) Applications,” Electron Device Letters, Vol. 29, pp.994-997, 2008. 42. L. Y. Ding, T. Wang, Y. C. Hu, W. P. Shih, S. S. Lu, and P. Z. Chang, “CMOS-compatible electrochemical process for RF CMOS inductors,” The 15th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers 2009), Denver, CO, USA, June 21-25, 2009, pp.2118–2121. 43. A. G. Nassiopoulos, S. Grigoropoulosa, L. Canhamb, A. Halimaouic, I. Berbezierd, E. Gogolidese, and D. Papadimitrioue, “Sub-micrometre luminescent porous silicon structures using lithographically patterned substrates,” Thin Solid Films, Vol. 255, pp.329-333, 2005. 44. P. Steiner, and W. Lang, “Micromachining applications of porous silicon,” Thin Solid Films, Vol. 255, pp.52-58, 1995. 45. M. Krüger, R. Arens-Fischer, M. Thönissen, H. Münder, M. G. Berger, H. Lüth, S. Hilbrich, and W. Theiss, “Formation of porous silicon on patterned substrates,” Thin Solid Films, Vol. 276, pp.257-260, 1996. 46. L. Canham, Properties of porous silicon, INSPEC: London, UK, pp.15, 1997. 47. L. T. Canham, A. G. Cullis, C. Pickering, O. D. Dosser, T. I. Cox, and T. P. Lynch, “Luminescent anodized silicon aerocrystal networks prepared by supercritical drying,” Nature, Vol. 368, pp.133-135, 1994. 48. V. M. Demidovich, G. B. Demidovich, E. I. Dobrenkova, and S. N. Kozlov, “Adsorption-sensitive diode based on porous silicon,” Soviet Technical Physics Letters, Vol. 8, pp.459-460, 1992. 49. L. Canham, Properties of porous silicon; INSPEC: London, UK, pp.234-237, 1997. 50. C. P. Yue, S. S. Wong, “Design strategy of on-chip inductors for highly integrated RF systems,” In Proceedings of the 36th annual ACM/IEEE Design Automation Conference, New Orleans, LA, USA, June 21-25, 1999, pp.982-987. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37995 | - |
| dc.description.abstract | 隨著平面液晶顯示器尺寸之成長,液晶槽結構內部的應力所衍生的缺陷也日益顯著。Mura就是典型液晶顯示器之缺陷,其原因在於玻璃基板的過度變形,使得光穿透之路徑產生明顯的偏差,並於螢幕上造成亮度與顏色不均勻之現象。而Mura之種類則依照缺陷之形狀與成因等所命名,例如:點狀、蛋型與漏光Mura等。
目前分析Mura之方法多採用有限元素法來還原液晶槽內部所發生之光學或力學行為等,但是對於設計液晶槽與避免Mura之發生,仍必須依據大量的模擬與實驗數據並透過田口法來制定最佳的設計範圍,此設計方式耗時且缺乏直觀之力學依據。本研究提出液晶槽之解析力學模型來分析其內部結構的力學行為,以避免Mura的產生。此解析力學模型乃延伸於典型之Winkler模型,結構由一個雙邊固定之樑結構與數個線性彈性體所組成,透過此力學模組便可以有效地預測液晶槽內部結構之變形與受力狀態,並提供設計者快速且準確的液晶槽設計規範。 本研究中,間隙子受外力之塌陷所產生之Gap Mura與液晶材料受重力之影響所導致的Gravity Mura為主要分析的目標。本文將詳細敘述如何建立兩大問題的液晶槽力學模型,並透過無因次化分析與輔助力學模型來解得液晶槽模型的解析解,此解析模型更經過有限元素模擬的修正來補償無法考慮的變數並提高解析解的精準度,最後提出兩大問題的液晶槽設計規範以避免Gap與Gravity Mura的產生。此研究之貢獻在於建立複雜的液晶槽理論模型與克服多尺度結構模擬之困難,並提供快速且準確的液晶槽設計規範,以有效地節省平面液晶顯示器於設計與製程上時間與成本。另外,此力學模型更可應用於內嵌式的觸控液晶顯示器的設計,以預估外力對顯示器造成的影響,以提高觸控式液晶顯示器的可靠度。 | zh_TW |
| dc.description.abstract | Gap and gravity Mura due to the improper deformation of color filter glass are the familiar defects in large-sized liquid crystal displays. This investigation presents two different types of analytical models for liquid crystal cell under applied loading and gravity force to prevent the occurrence of gap and gravity Mura. These analytical models are established from the Winkler model which is composed of a beam and an elastic foundation since the relationship of force-deflection in Winkler model is linear. Therefore, these analytical models can be utilized to describe the correlation between the mechanical behaviors of color filter glass and photospacers in liquid crystal cells. The analytical solutions of liquid crystal cell models have been derived under the specific assumptions and the alternative models for linearization. All the analytical solutions have to be modified through the finite element analysis to improve their accuracy of analytical models. Furthermore, the analytical model for gap Mura analysis can also be extended to the design of in-cell touch panel since the local loading due to touch and probe testing are both considered in the analytical model. Consequently, these analytical models for liquid crystal cell can be used to provide instant design criteria for the structures of liquid crystal cell and to enhance the reliability of liquid crystal displays without considerable simulation and experimental data. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T15:55:30Z (GMT). No. of bitstreams: 1 ntu-100-D95543006-1.pdf: 5026315 bytes, checksum: 67ce4c4fc0814892969a58c59fdf559d (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vii LIST OF TABLES xi Chapter 1 Introduction 1 1.1 Mura of Liquid Crystal Display 1 1.1.1 Definition of Mura 1 1.1.2 Gap Mura 3 1.1.3 Gravity Mura 5 1.2 Literature Survey 7 1.3 Methodology 10 Chapter 2 Mechanical Model of LC Cell for Gap Mura Analysis 14 2.1 Governing Equation of Analytical Model 17 2.2 Simplification and Linearization for LC Cell Model 21 2.2.1 Rigid Contact Model 22 2.2.2 Suspending Model 26 2.2.3 Contact Criteria for LC Cell 30 2.3 Analytical Solution of LC Cell Model 34 2.3.1 Maximum Displacement of CF Glass 34 2.3.2 Maximum Stress Applied on Photospacers 37 2.4 Preliminary Design Criteria for LC Cell with Photospacers 39 2.4.1 Safety Factor 39 Chapter 3 Simulation and Numerical Modification for LC Cell Model 40 3.1 Finite Element Model for LC Cell 40 3.1.1 Boundary Settings for Finite Element Analysis 41 3.1.2 Mesh Element 43 3.2 Simulation Results of Finite Element Analysis 44 3.2.1 Displacement of CF Glass 44 3.2.2 Maximum Stress Applied on Photospacer 45 3.3 Numerical Modification for LC Cell Model 47 3.3.1 Modification Function for Contact Criteria 47 3.3.2 Modification Functions for Analytical Solutions 49 Chapter 4 Mechanical Model of LC Cell for Gravity Mura Analysis 51 4.1 Governing Equation of Analytical Model 54 4.1.1 Constraint Condition for LC Cell Model 56 4.1.2 Special Condition of LC Cell Model 58 4.2 Simplification and Linearization for LC Cell Model 60 4.2.1 Alternative Model 60 4.2.2 Contact Length and Elastic Foundation Modulus 64 4.3 Analytical Solution of LC Cell Model 66 4.3.1 Analytical Solution for Noncontact LC Model 66 4.3.2 Analytical Solution for Contact LC Model 67 Chapter 5 Conclusions and Future Works 73 5.1 Conclusions 73 5.1.1 Design Criteria of LC Cell under Gap Mura Issue 73 5.1.2 Design Criteria of LC Cell under Gravity Mura Issue 76 5.2 Future Works 77 Chapter 6 Appendix-CMOS-compatible Electrochemical Process for Improving Quality Factor of Spiral Microinductors 78 6.1 Introduction 78 6.2 Design of Post-CMOS Process 80 6.3 Characteristics of CMOS Inductors 83 6.4 Conclusions 89 REFERENCE 90 | |
| dc.language.iso | en | |
| dc.subject | Winkler模型 | zh_TW |
| dc.subject | 平面液晶顯示器 | zh_TW |
| dc.subject | 液晶槽 | zh_TW |
| dc.subject | 間隙子 | zh_TW |
| dc.subject | Gap Mura | zh_TW |
| dc.subject | Gravity Mura | zh_TW |
| dc.subject | Flat liquid crystal display | en |
| dc.subject | Winkler model | en |
| dc.subject | photospacer | en |
| dc.subject | gravity Mura | en |
| dc.subject | gap Mura | en |
| dc.subject | liquid crystal cell | en |
| dc.title | 液晶槽之力學行為分析與快速設計準則 | zh_TW |
| dc.title | Mechanical Analysis and Instant Design Criteria for Liquid Crystal Cell with Photospacers | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 施文彬 | |
| dc.contributor.oralexamcommittee | 黃榮堂,陳俊杉,胡毓忠,蔡熊光,黃崑? | |
| dc.subject.keyword | 平面液晶顯示器,液晶槽,間隙子,Gap Mura,Gravity Mura,Winkler模型, | zh_TW |
| dc.subject.keyword | Flat liquid crystal display,liquid crystal cell,gap Mura,gravity Mura,photospacer,Winkler model, | en |
| dc.relation.page | 95 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-10 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 4.91 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
