Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37982
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor段維新
dc.contributor.authorCheng-Han Luen
dc.contributor.author呂承翰zh_TW
dc.date.accessioned2021-06-13T15:54:47Z-
dc.date.available2010-06-24
dc.date.copyright2008-06-24
dc.date.issued2008
dc.date.submitted2008-06-17
dc.identifier.citation[1] F. Yen-Pei, “Characterization of Ni-Cu-Zn Ferrite Prepared from Steel Pickling Liquor and Waste Solutions of Electroplating,” J. Am. Ceram. Soc. 89 [2006] 3547-3549
[2] N. Rammamanohar Reddy, M. Venkata Ramana, G. Rajitha, E. Rajagopal, K.V. Sivakumar, V.R.K. Murthy, “Stress Sensitivity of Inductance in NiCuZn ferrites,” J. Magn. Magn. Mater. 292 (2005) 159-163
[3] K. Woo Chul, P. Seung Iel, K. Sam Jin, “Magnetic and Structural Properties of Ultrafine Ni-Zn-Cu Ferrite Grown by a Sol-Gel Method,” J. Appl. Phy. 87 (2000) 6241-6243
[4] P.K. Roy, J. Bera, “Enhancement of the Magnetic Properties of Ni-Cu-Zn Ferrites with the Substitution of a Small Fraction of Lanthanum for Iron,” Materials Research Bulletin 42 (2007) 77-83
[5] S.T. Mahmud, A.K.M. Akther Hossain, A.K.M. Abdul Hakim, M. Seki, T. Kawai, H. Tabata, “Influence of Microstructure on the Complex Permeability of Spinel Type Ni-Zn Ferrite,” J. Magn. Magn. Mater. 305 (2006) 269-274
[6] P. Jihwan, H. Seung Hee, C. Yongho, K. Jongryoul, “Fabrication and Magnetic Properties of LTCC NiZnCu Ferrite Thick Films,” Phy. Stat. Sol. 201 (2004) 1790-1793
[7] T. Nakamura, Y. Okano, S. Miura, “Interfacial Diffusion between Ni-Zn-Cu Ferrite and Ag during Sintering,” J. Mater. Sci. 33 (1998) 1091-1094
[8] K. Kawano, S. Kusumi, H. Kishi, A. Fujii, Y. Mori, “Lattice Distortion of NiZnCu Ferrite Co-Fired with Silver,” J. Magn. Magn. Mater. 310 (2007) 2552-2554
[9] M. Chunlin, Z. Ji, C. Xuemin, W. Xiaohui, Y. Zhenxing, L. Longtu, “Cofiring Behavior and Interfacial Structure of NiCuZn Ferrite/PMN Ferroelectrics Composites for Multilayer LC Filters,” Mater. Sci. Eng. B 127 (2006) 1-5
[10] L. Xiangchun, G. Feng, L. Jiaji, T. Changsheng, “Low-Temperature Cofiring Behavior of ZnTiO3 dielectrics/NiZnCu Ferrite Composites,” J. Alloys. Compd. (2008) 1-4
[11] W.D. Kingery, H.K. Bowen, D.R. Uhlmann, Introduction to ceramics, John Wiley & Sons, NY (1976)
[12] J. Smit, H.P.J. Wijn, Ferrite, Tokyo electrical Engineering College Press, JP (1965)
[13] Raul Valenzuela, Magnetic ceramics, Cambridge University Press, NY (1994)
[14] H.M. Schlicke, Essentials of dielectromagnetic engineering, John Wiley & Sons, NY (1961)
[15] Wilhelm H. von Aulock, Clifford E. Fay, Linear ferrite devices for microwave applications, Academic Press, NY (1968)
[16] Alex Goldman, Modern ferrite technology, Springer, NY (2006)
[17] C. Guillaud, J. Phys. Rad., 12 (1951) 239
[18] T.T Ahmed, I.Z. Rahman, S.A.M. Tofail, “Effect of Copper Ion Distribution on the Magnetization of Nanoscaled NiZn Ferrite,” J. Magn. Magn. Mater. 272-276 (2004) 2250-2252
[19] Zhengxing Yue, Ji Zhou, Longtu Li, Xiaohui Wang, Zhilun Gui, “Effect of Copper on the Electromagnetic Properties of Mg-Zn-Cu Ferrites Prepared by Sol-Gel Auto-Combustion Method,” Material Science and Engineering B86 (2001) 64-69
[20] S. Manjura Hoque, Md. Amanullah Choudhury, Md. Fakhrul Islam, “Characterization of Ni-Cu Mixed Spinel Ferrite,” J. Magn. Magn. Mater. 251 (2002) 292-303
[21] J. Mürbe and J. Töpfer, “Ni-Cu-Zn Ferrites for Low Temperature Firing: I. Ferrite Composition and its Effect on Sintering Behavior and Permeability,” Journal of Electroceramics, 15 (2005) 215~221
[22] Yu-Ching Fang, “Effects of Oxide Additives on Densification and Devitrification Kinetics and Mechanism of Glass Ceramic,” 國立清華大學材料科學工程學系博士論文 (2001)
[23] Chia-Ruey Chang, “Kinetics and Mathematical Analyses of Cofiring for an Ag-Based Low-Temperature Cofired Ceramic Package,” 國立清華大學材料科學工程學系博士論文 (1998)
[24] T. Cheng, R. Raj, “Flaw Generation During Constrained Sintering of Metal-Ceramic and Metal-Glass Multilayer Films,” J. Am. Ceram. Soc., 72[9] (1989) 1649-1655
[25] Lih-Shan Chen, Chi-Shiung Hsi, Shen-Li Fu, Jiuun-Yih Lin, “Cosintering of Ni-Zn-Cu Ferrite with Low-Temperature Cofired Ceramic Substrates,” Jpn. J. Appl. Phys. Vol.39 (2000) 150-154
[26] M. Maters-Kammerer, U. Mackens, K. Reimann, R. Pietig, D. Hennings, B. Schreinemacher, R. Mauczok, S. Grunlke, C. Martiny, “Material Properties and RF applications of high k and ferrite LTCC ceramics,” Microelectronics Reliability 46 (2006) 134-143
[27] Hee-Jun Kim, Young-Jin Kim, Jong-Ryoul Kim, “An Integrated LTCC Inductor Embedding NiZn Ferrite,” Transactions on Magnetics Vol. 42 No.10 (2006)
[28] J. Mürbe, J. Töpfer, “Ni-Cu-Zn Ferrites for Low Temperature Firing: II. Effects of powder morphology and Bi2O3 addition on microstructure and permeability,” J. Electroceram. 16 (2006) 199-205
[29] Mukesh C. Dimri, A. Verma, Subhash C. Kashyap, D.C. Dube, O.P. Thankur, Chandra Prakash, “Structure, Dielectric and Magnetic Properties of NiCuZn Ferrite Grown by Citrate Precursor Method,” Material Science and Engineering B 133 (2006) 42-48
[30] T. Nakamura, “Low-Temperature Sintering of Ni-Zn-Cu Ferrite and Its Permeability Spectra,” J. Magn. Magn, Mater. 168 (1997) 285-291
[31] A. Verma, T.C. Goel, R.G. Mendiratta, “Frequency Variation of Initial Permeability of NiZn Ferrites Prepared by The Citrate Precursor Method,” J. Magn. Magn. Mater. 210 (2000) 274-278
[32] T. Nakamura, T. Tsutaokab, K. Hatakeyamac, “Frequency dispersion of Permeability in Ferrite Composite Materials,” J. Magn. Magn. Mater. 138 (1994) 319
[33] T. Tsutaoka, M. Ueshima, T. Yokunaga, T. Nakamura, K. Hatakeyama, “Frequency Dispersion and Temperature Vatiation of Complex Permeability of NiZn Ferrite Composite Materials,” J. Appl. Phys. 78 (1995) 3983
[34] R. Lebourgeois, C. Le Fur, M. Labeyrie, M. Paté, J-P. Ganne, “Permeability Mechanisms in High Frequency Polycrystalline Ferrite,” J. Magn. Magn. Mater. 160 (1996) 329-332
[35] M. Le Floc’h, J. Loaëc, H. Pascard, A. Globus, “Effect of Pressure on Soft Magnetic Materials,” IEEE Trans. Magn. Mag-17 No.6 (1981) 3129-3134
[36] A. Globus, J. Phys. (Paris), Colloq 1 (1977) 1
[37] P. Nagaraju, M. Balaraju, K. Mohan Reddy, P.S. Sai Prasad, N. Lingaiah, “Selective Oxidation of Allylic Alcohols Catalyzed by Silver Exchanged Molybdovanado Phosphoric Acid Catalyst in the Presence of Molecular Oxygen,” Catalysis Communications 9 (2008) 1389-1393
[38] Zhi Yang, Jing Li, Xiangguang Yang, Xiaofan Xie, Yue Wu, “Gas-Phase Oxidation of Alcohols Over Silver: The Extension of Catalytic Cycles of Oxidation of Alcohols in Liquid-Phase,” J. Molecular Catalysis A: Chemical 241 (2005) 15-22
[39] JCPD, PDF # 500741
[40] T.B. Massalski, J.L. Murray, L.H. Bennett, H. Baker, Binary Alloy Phase Diagrams, Metals Park, Ohio: American Society for Metals (1986)
[41] K. Wefer, C. Misra, “Oxides and Hydroxide of Aluminum,” Alcoa Technocal Paper No.19 (1987)
[42] 游步光, “次微米氧化鋁膠體製程及燒結研究,” 國立台灣大學材料科學與工程學研究所碩士論文 (1993)
[43] JCPD, PDF # 800955
[44] Ji Guang Li, Xudong Sun, “Synthesis and Sintering Behavior of a Nanocrystalline α-Alumina Powder,” Acta Mater. 48 (2000) 3103-3112
[45] S. Cava, S.M. Tebcherani, S.A. Pianaro, C.A. Paskocimas, E. Longo, J.A. Varela, “Structure and Spectroscopic Analysis of γ-Al2O3 to α-Al2O3-CoAl2O4 Phase Transition,” Materials Chemistry and Physics 97 (2006) 102-108
[46] Z. Ruzhong, L. Longtu, T. Yin, G. Zhilun, “Characteristics and Effects of Interfacial Interdiffusion in Composite Multilayer Ceramic Capacitors,” Materials Chemistry and Physics 69 (2001) 230-235
[47] E. Rezlescu, N. Rezluscu, P.D. Popa, L. Rezlescu, C. Pasnicu, M.L. Craus, “Effect of Copper Oxide Content on Intrinsic Properties of MgCuZn Ferrite,” Material Research Bulletin 33 (1998) 915-925
[48] E. Rezlescu, N. Rezluscu, P.D. Popa, L. Rezlescu, M.L. Craus, “Copper Ions Influence on the Physical Properties of a Magnesium-Zinc Ferrite,” J. Magn. Magn, Mater. 182 (1998) 199-206
[49] J.H. Nam, H.H. Jung, J.Y. Shin, J.H. Oh, “The Effect of Cu Substitution on the Electrical and Magnetic Properties of NiZn Ferrites,” IEEE Trans. Magn. 31 (1995) 3985-3987
[50] J.T. Darsell, K.S. Weil, “Experimental Determination of Phase Equilibria in the Silver-Copper Oxide System at High Temperature,” Scripta Materiallia 56 (2007) 1111-1114
[51] H. Momoi, A. Nakano, T. Suzuki, T. Nomura, “Nano-structure Control of NiZnCu Ferrites for Multilayer Chip Components,” Proceedings of the Sixth International Conference on Ferrites, Tokyo and Kyoto, Japan (1992) 1202-1205
[52] A. Nakano, H. Momoi, T. Nomura, “Effect of Ag on the Microstructure of the Low Temperature Sintered NiCuZn Ferrites,” Proceedings of the Sixth International Conference on Ferrites, Tokyo and Kyoto, Japan (1992) 1225-1228
[53] Robert E. Reed-Hill, Physical metallurgy Principles 3rd Edition, PWS Publishing Company, Boston (1991)
[54] H. Jen-Yan, K. Wen-Song, S. Hon-Dar, C. Chi-Jen, “Low Temperature Fired NiCuZn Ferrite,” IEEE Trans. Magn. 30 (1994) 4875-4877
[55] D. Srinivasan, P.R. Subramanian, “Kirkendall Porosity during Thermal Treatment of Mo-Cu Nanomultilayers,” Material Science Engineering A 459 (2007) 145-150
[56] Ellingham H. J. T., J Soc Chem Ind (London) 63 (1944) 125
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37982-
dc.description.abstractThe co-firing behaviour of Ni-Cu-Zn ferrite, LTCC, and Ag has been investigated in the present study. Various amounts of ferrite, LTCC, and Ag powders are mixed and sintered at different temperatures. The interactions between these materials are observed. Laminated specimens composing of ferrite, LTCC, and Ag layers are also prepared by sintering in air or N2. The magnetic properties of the samples are measured by superconducting quantum interference device magnetometer (SQUID) and impedance analyzer. X-ray diffraction is used for the phase identification. The material distribution is investigated by electron probe X-Ray micro-analyzer (EPMA). The addition of bismuth oxide enhances the densification and the grain growth of ferrite. An addition of 0.4 wt% bismuth oxide in ferrite leads to a high permeability. The change of Fe2+ to Fe3+ in ferrite is intrigued by the presence of LTCC and further promoted by the addition of silver. Such oxidation is also enhanced with the increase of the sintering temperature. The oxidation of ferrite and the presence of the α-Fe2O3 seriously degrade the saturation magnetization. A new glass phase is formed during the cofiring of ferrite, LTCC, and silver in air. This glassy phase flows at elevated temperature and affects the diffusion of the material in the samples. When the samples are sintered in N2, copper and silver form a solid solution, which also becomes a liquid phase at high temperature. The Ag-Cu liquid flows toward the ferrite layer and results in the dispersion of silver particles within ferrite in the laminated specimens.en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:54:47Z (GMT). No. of bitstreams: 1
ntu-97-R95527001-1.pdf: 25309722 bytes, checksum: 015a4d1f319318031cbde36beb47c2f2 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontentsChapter 1 Introduction 1
Chapter 2 Literature Survey 3
2-1 Ferrimagnetism 3
2-2 Spinel Structure and Cation Distribution in Ferrite 8
2-3 Low Temperature Co-fired Ceramics (LTCC) 19
2-4 Previous researches about co-firing of ferrite and LTCC 23
Chapter 3 Experimental Procedures 27
3-1 Sintering of Ferrite 27
3-1-1 Materials and the Sintering Conditions 27
3-1-2 Density and Microstructure Analysis 27
3-1-2-1 Density Measurement 27
3-1-2-2 Phase Identification and Grain Size Distribution 28
3-1-3 Magnetic Properties Measurement 29
3-2 Co-firing of Ferrite and Silver 29
3-2-1 Materials and the sintering condition 29
3-2-2 Density and Microstructure Analysis 30
3-2-3 Magnetic Properties Measurement 30
3-3 Co-firing of Ferrite, LTCC, and Silver 30
3-3-1 Materials and Sintering Conditions 30
3-3-2 Density and Microstructure Analysis 31
3-3-2-1 Density Measurement 31
3-3-2-2 Microstructure and Phase Analysis 31
3-3-3 Magnetic Properties Measurement 32
3-4 Co-firing of Ferrite/LTCC/Silver Laminates 32
3-4-1 Materials and Sintering Conditions 32
3-4-2 Microstructure Analysis 33
Chapter 4 Results 39
4-1 Sintering of Ferrite 39
4-1-1 Microstructure 39
4-1-2 Density and Grain Size Distribution 39
4-1-3 Phase Identification 41
4-1-4 Magnetic Properties 41
4-2 Co-firing of Ferrite and Silver 53
4-2-1 Microstructure 53
4-2-2 Density and Grain Size Distribution 54
4-2-3 Phase Identification 55
4-2-4 Magnetic Properties 55
4-3 Co-firing of Ferrite, LTCC, and Silver 61
4-3-1 Density and Microstructure 61
4-3-2 Phase Identification 62
4-3-3 Magnetic Properties 66
4-4 Co-firing of Ferrite/LTCC/Silver Laminates 76
4-4-1 Samples Sintered in Air 76
4-4-1-1 Microstructure 76
4-4-1-2 Material Distribution 78
4-4-2 Samples Sintered in N2 94
4-4-2-1 Microstructure 94
4-4-2-2 Material Distribution 95
Chapter 5 Discussions 109
5-1 Effect of Additives 109
5-2 Effect of LTCC 112
5-3 Material Diffusion 113
5-3-1 Silver Diffusion 113
5-3-2 Diffusion of other materials 117
5-4 Sintering Atmosphere 122
Chapter 6 Conclusions 127
References 129
dc.language.isoen
dc.subject低溫共燒陶瓷zh_TW
dc.subject磁導率zh_TW
dc.subject飽和磁化量zh_TW
dc.subject銀擴散zh_TW
dc.subjectNi-Cu-Zn ferritezh_TW
dc.subjectsaturation magnetizationen
dc.subjectNi-Cu-Zn ferriteen
dc.subjectLTCCen
dc.subjectcofiringen
dc.subjectsilveren
dc.subjectdiffusionen
dc.subjectpermeabilityen
dc.title鐵氧磁體與低溫共燒陶瓷之燒結性質zh_TW
dc.titleCo-firing of Ferrite and LTCCen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王錫福,曾文甲,盧宏陽
dc.subject.keywordNi-Cu-Zn ferrite,低溫共燒陶瓷,磁導率,飽和磁化量,銀擴散,zh_TW
dc.subject.keywordNi-Cu-Zn ferrite,LTCC,cofiring,silver,diffusion,permeability,saturation magnetization,en
dc.relation.page134
dc.rights.note有償授權
dc.date.accepted2008-06-17
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
24.72 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved