請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37980完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉懷勝(Hwai-Shen Liu) | |
| dc.contributor.author | Chia-Ying Chiang | en |
| dc.contributor.author | 江佳穎 | zh_TW |
| dc.date.accessioned | 2021-06-13T15:54:40Z | - |
| dc.date.available | 2010-06-30 | |
| dc.date.copyright | 2008-07-02 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-06-17 | |
| dc.identifier.citation | Andrieu J. and B. Claudel; 'Measurement of Interfacial Area in a Packed column by The Sulfite Oxidation Method. Comparison with The Wetted Area,' Chem. Eng. Sci., 29, 1263 (1974)
Assmann, G., G. Blasey, B. Gusche, L. Jeromin, J. Rigal, R. Armengand and B. Cormary; 'Continuous Progress for the Production of Lower Alkyl Esters,' U.S. Patent 5,514,820 (1996) Brown, G. G.; Unit Operations, pp. 214, Wiley, New York (1950) Burns, J. R. and C. Ramshaw; 'Process Intensification: Visual Study of Liquid Maldistribution in Rotating Packed Beds,' Chem. Eng. Sci., 51, 1347 (1996) Chandra, A., P. S. Goswami and D. P. Rao; 'Characteristics of Flow in a Rotating Packed Bed (HIGEE) with Split Packing,' Ind. Eng. Chem. Res., 44, 4051 (2005) Chapman, S. and T. G. Cowling; 'Mathematical Theory of Non-Uniform Gases,' 3rd Ed., Cambridge Press (1970) Chen, Y. S. and H. S. Liu; 'Absorption of VOCs in a Rotating Packed Bed,' Ind. Eng. Chem. Res., 41, 1583 (2002) Chen, Y. S., C. C. Lin and H. S. Liu, 'Mass Transfer in a Rotating Packed Bed with Various Radii of the Bed,' Ind. Eng. Chem. Res., 44, 7868 (2005) Chen, Y. S., C. C. Lin and H. S. Liu, 'Mass Transfer in a Rotating Packed Bed with Viscous Newtonian and non-Newtonian Fluids,' Ind. Eng. Chem. Res., 44, 1043 (2005) Chen, Y. S., F. Y. Lin, C. C. Lin, C. Y. Tai and H. S. Liu; 'Packing Characteristics for Mass Transfer in a Rotating Packed Bed,' Ind. Eng. Chem. Res., 45, 6846 (2006) Chen, J. F., Y. H. Wang, F. Guo, X. M. Wang and C. Zheng; 'Synthesis of Nanoparticles with Novel Technology: High-Gravity Reactive Precipitation,' Ind. Eng. Chem. Res., 39, 948 (2000) Chen, J. F., L. Shao, C. Zhang, J. Chen and G. Chen; “Preparation of TiO2 Nanoparticles by a Rotating Packed Bed Reactor,” J. Mate. Sci. Lett., 22, 437 (2003) Chen, J., Y. Li, Y. Wang, J. Yun and D. Cao; 'Preparation and Characterization of Zinc Sulfide Nanoparticles under High-Gravity Environment,' Mater. Res. Bull., 39, 185 (2004b) Chen, Y. H., C. Y. Chang, W. L. Su, C. Y. Chiu, Y. H. Yu, P. C. Chiang, C. F. Chang, J. L. Shie, C. S. Chiou and S. I. M. Chiang; 'Ozonation of CI Reactive Black 5 Using Rotating Packed Bed and Stirred Tank Reactor,' J. Chem. Technol. Biotechnol., 80, 68 (2005) Cheng, H. H. and C. S. Tan; 'Reduction of CO2 Concentration in a Zinc/air Battery by Absorption in a Rotating Packed Bed,' J. Power Sources, 162,1431 (2006) Chen, J. F. and L. Shao; 'Recent Advances in Nanoparticles Production by High Gravity Technology - From Fundamentals to Commercialization,' J. Chem. Eng. Japan, 40, 896 (2007) Cheremisinoff, N. P.; Handbook of Heat and Mass transfer Vol.2: Mass Transfer and Reactor Design, 1st ed., pp. 903, Gulf Publishing Company, Houston, Texas (1986) Chiang, S. I. M., Y. H. Chen, C. Y. Chang, W. L. Su, C. C. Chen, C. Y. Chiu, Y. H. Yu and P. C. Chiang; 'Modeling Ozone Contacting Process in a Rotating Packed Bed,' Ind. Eng. Chem. Res., 43, 228 (2004) Chiu, C. Y., Y. H. Chen and Y. H. Huang; 'Removal of Naphthalene in Brij 30-containing Solution by Ozonation Using Rotating Packed Bed,' J. Hazardous Materials, 147, 732 (2007) Cussler, E. L.; Diffusion Mass Transfer in Fluid Systems, 2nd ed., pp.101, Cambridge University Press, Cambridge, United Kingdom (1997) Dhiman, S. K., V. Verma, D. P. Rao and M. S. Rao; 'Process Intensification in a Trickle-bed Reactor: Experimental Studies,' AIChE J., 51, 3186 (2005) Diesel, R.; 'The Diesel Oil-Engine and Its Industrial Importance Particularly for Great Britain,' Chem. Abstr., 7, 1605 (1913) Fair, J. R., A. F. Seibert, M. Dehrens, P. P. Saraber and Z. Olujic; “Structured Packing Performance-Experimental Evaluation of Two Predictive Models,” Ind. Eng. Chem. Res., 39, 1788 (2000) Guo, F., C. Zheng, K. Guo and N. C. Gardner; 'Hydrodynamics and Mass Transfer in Crossflow Rotating Packed Bed,' Chem. Eng. Sci., 52, 3853 (1997) Guo, K., F. Guo, Y. Feng, J. Chen, C. Zheng and N. C. Gardner; 'Synchronous Visual and RTD Study on Liquid Flow in Rotating Packed-bed Contactor,' Chem. Eng. Sci., 55, 1699 (2000) Heymes, F., P. M. Demoustier, F. Charbit, J. L. Fanlo and P. A. Moulin; 'New Efficient Absorption Liquid to Treat Exhaust Air Loaded with Toluene,' Chem. Eng. J., 115, 225 (2006) Higbie R.; 'The Rate of Absorption of Pure Gas into a Still Liquid during Short Periods of Exposure,' Trans. Am. Inst. Chem. Eng., 31, 365 (1935) Jansens, P. and A. Stankiewicz; 'Process Intensification within the Framework of Sustainable Development,' 6th Int. Conf. Process Intensification, Delft (2005) Jassim, M. S., G. Rochelle, D. Eimer and C. Ramshaw; 'Carbon Dioxide Absorption and Desorption in Aqueous Monoethanolamine Solutions in a Rotating Packed Bed,' Ind. Eng. Chem. Res., 46, 2823 (2007) Kavanaugh, M. C. and R. R. Trussell; 'Design of Areation Towers to Strip Volatile Contaminants from Drinking Water,' AWWA J., 684, Dec. (1980) Kelleher, T. and J. R. Fair; 'Distillation Studies in a High-gravity Contactor,' Ind. Eng. Chem. Res., 35, 4646 (1996) Keyvani, M. and N. C. Gardner; 'Operating Characteristics of Rotating Beds,' Chem. Eng. Prog., 85, 48 (1989) Knothe, G.., J. V. Gerpen and J. Krahl; 'The Biodiesel Handbook,' pp. 33, AOCS Press, Champaign, Illinois (2005) Ku, Y., Y. S. Ji and H. W. Chen; 'Ozonation of O-cresol in Aqueous Solutions Using a Rotating Packed-bed Reactor,' Water Environ. Res., 80, 41 (2008) Kumar, M. P. and D. P. Rao; 'Studies on a High-gravity Gas-liquid Contactor,' Ind. Eng. Chem. Res., 29, 917 (1990) Kwok, M. P. and A. W. Neumann; 'Contact Angle Measurement and Contact Angle Interpretation,' Adv. Colloid Interface Sci., 81, 167 (1999) Lewis, W. K. and W. E. Whitman; 'Principles of Gas Absorption,' Ind. Eng. Chem., 16, 1215 (1924) Lin, C. C. and H. S. Liu; 'Adsorption in a Centrifugal Field: Basic Dye Adsorption by Activated Carbon,' Ind. Eng. Chem. Res., 39, 161 (2000) Lin, C. C., T. J. Ho and W. T. Liu; 'Distillation in a Rotating Packed Bed,' J. Chem. Eng. Japan, 35, 1298 (2002) Lin, C. C., W. T. Liu and C. S. Tan; 'Removal of Carbon Dioxide by Absorption in a Rotating Packed Bed,' Ind. Eng. Chem. Res., 42, 2381 (2003a) Lin, C. C. and W. T. Liu; 'Ozone Oxidation in a Rotating Packed Bed,' J. Chem. Technol. Biotechnol., 78, 138 (2003b) Lin, C. C., T. Y. Wei, W. T. Liu and K. P. Shen; 'Removal of VOCs from Gaseous Streams in a High-Voidage Rotating Packed Bed,' J. Chem. Eng. Japan, 37, 1471 (2004a) Lin, C. C., Y. S. Chen and H. S. Liu; 'Adsorption of Dodecane from Water in a Rotating Packed Bed,' J. Chin. Inst. Chem. Engrs., 35, 531 (2004b) Lin, C. C. and W. T. Liu; 'Removal of an Undesired Component from a Valuable Product Using a Rotating Packed Bed,' J. Ind. Eng. Chem., 12, 455 (2006) Lin, C. C., T. Y. Wei, S. K. Hsu and W. T. Liu; 'Performance of a Pilot-scale Cross-flow Rotating Packed Bed in Removing VOCs From Waste Gas Streams,' Sep. Purif. Technol., 52, 274 (2006) Lin, C. C. and W. T. Liu; 'Mass Transfer Characteristics of a High-voltage Rotating Packed Bed,' J. Ind. Eng. Chem., 13, 71 (2007) Lin, C. C., and G. S. Jian; 'Characteristics of a Rotating Packed Bed Equipped With Blade Packings,' Sep. Purif. Technol., 54, 51 (2007) Lin, C. C. and B. C. Chen; 'Carbon Dioxide Absorption into NaOH Solution in a Cross-flow Rotating Packed Bed,' J. Ind. Eng. Chem., 13, 1083 (2007) Liu, H. S., C. C. Lin, S. C. Wu and H. W. Hsu; 'Characteristics of a Rotating Packed Bed,' Ind. Eng. Chem. Res., 35, 3590 (1996) Linek, V., T. Moucha and F. J. Rejl; “Hydraulic and Mass Transfer Characteristics of Packings for Absorption and Distillation Columns. Rauchert-Metall-Sattel-Rings,” Chem. Eng. Res. Des., 79, 725 (2001) Munjal, S., M. P. Dudukovic and P. Ramachandran; 'Mass-transfer in Rotating Packed Beds—I. Development of Gas-Liquid and Liquid–Solid Mass-Transfer Correlations,” Chem. Eng. Sci., 44, 2245 (1989a) Munjal, S., M. P. Dudukovic and P. Ramachandran; 'Mass-transfer in Rotating Packed Beds—II. Experimental Results and Comparison with Theory and Gravity Flow,' Chem. Eng. Sci., 44, 2257 (1989b) Munz, C.; Air-water Phase Equilibria and Mass Transfer of Volatile Organic Solutes, Ph.D. Dissertation, Stanford University, Stanford, California, USA (1985) Munz, C. and P. V. Roberts; 'Air-water Phase Equilibria of Volatile Organic Solutes,' AWWA J., 62, May (1987) Onda, K., H. Takeuchi and Y. Okumoto; 'Mass Transfer Coefficients between Gas and Liquid Phases in Packed Columns,' J. Chem. Eng. of Japan, 1, 56 (1968) Peel, J., C. R. Howarth and C. Ramshaw; 'Process Intensification: Higee Seawater Deaeration,' Chem. Eng. Res. Des., Transactions of the Institute of Chemical Engineers, Part A, 76, 585 (1998) Perry, R. H. and D. W. Green; Perry’s Chemical Engineers' Handbook, 6th ed., McGraw-Hill, New York (1984) Quarderer, G. J., D. L. Trent, E. J. Stewart, Tirtowidjojo, J. Mehta and A. Tirtowidjojo. The Dow Chemical Company; “Method for Synthesis of Hypohalous Acid,” U.S. Patent 6,048,513 (2000) Ramshaw, C. and R. H. Mallinson; 'Mass Transfer Process,' U.S. Patent 428,325, (1981) Ramshaw, C. and R. H. Mallinson; 'Mass Transfer Apparatus and Process,' U.S. Patent 4,400,275, (1981) Ramshaw, C.; 'Higee Distillation – An Example of Process Intensification,' Chem. Eng. (Lond.), 389, 13 (1983) Rao, D. P., A. Bhowal and P. S. Goswami; 'Process Intensification in Rotating Packed Beds (HIGEE): An Appraisal,' Ind. Eng. Chem. Res., 43, 1150 (2004) Reddy, K. J., A. Gupta, O. P. Rama and D. P. Rao; 'Process Intensification in a HIGEE with Split Packing,' Ind. Eng. Chem. Res., 45, 4270 (2006) Sandilya, P., D. P. Rao, A. Sharma and G. Biswas; 'Gas-Phase Mass Transfer in a Centrifugal Contactor,' Ind. Eng. Chem. Res., 40, 384 (2001) Sawistoski, H.; 'Flooding Velocities in packed Columns Operating at Reduced Pressure,' Chem. Eng. Sci., 6, 138 (1957) Shang, N. C., Y. H. Chen, Y. P. Yang, C. H. Chang and Y. H. Yu; 'Ozonation of Dyes and Textile Wastewater in a Rotating Packed Bed,' J. Environ. Sci. Heal A, 41, 2299 (2006) Shao, L., Y. Yu, S. Bian, J. Chen and X. Li; 'Synthesis of Nanosized Y-type TiOPc by a High Gravity Method,' J. Mater. Sci., 40, 4373 (2005) Shulman, H. L., C. F. Ullrich, A. Z. Proulx and J. O. Zimmerman; 'Performance of Packed Column II. Wetted and Effective Interfacial Areas Gas- and Liquid-Phase Mass Transfer Rates,' AIChE J., 1, 253 (1955) Singh, S. P., J. H. Wilson, R. M. Counce, J. F. Villiersfisher, H. L. Jennings, A. J. Lucero, G. D. Reed, R. A. Ashworth and M. G. Elliott; 'Removal of Volatile Organic-Compounds from Groundwater using a Rotary Air Stripper,' Ind. Eng. Chem. Res., 31, 574 (1992) Stankiewicz, A. J. and J. A. Moulijn; 'Process Intensification: Transforming Chemical Engineering,' Chem. Eng. Prog., 96, 22 (2000) Stankiewicz, A. and J. A. Moulijn; 'Process Intensification,' Ind. Eng. Chem. Res., 41, 1920 (2002) Stidham, W. D., D. W. Seaman and M. F. Danzer; 'Method for Preparing a Lower Alkyl Ester Product from Vegetable Oil,' U.S. Patent 6,127,560 (2000). Tai, C. Y. and C. T. Tai; 'Synthesis of Nanosized Calcium Carbonate Particles Using Higee Reactive Precipitation Technique,' VDI Berichte, 1901, 843 (2005) Tai. C. Y., C. T. Tai and H. S. Liu; 'Synthesis of Submicron Barium Carbonate Using a High-gravity Technique,' Chem. Eng. Sci., 61, 7479 (2006) Tai, C. Y., C. T. Tai, M. H. Chang and H. S. Liu; 'Synthesis of Magnesium Hydroxide and Oxide Nanoparticles Using a Spinning Disk Reactor,' Ind. Eng. Chem. Res., 46, 5536 (2007) Tai, C. Y., Y. H. Wang and H. S. Liu; 'A Green Process for Preparing Silver Nanoparticles Using Spinning Disk Reactor,' AIChE J., 54, 445 (2008) Tan, C. S. and J. E. Chen; 'Absorption of Carbon Dioxide with Piperazine and Its Mixtures in a Rotating Packed Bed,' Sep. Purif. Technol., 49, 174 (2006) Trent, D., and D. Tirtowidjojo; 'Intensifying The Process,' Chem. Eng. (Lond.), 742, 30 (2003) Tosh, A. K.; 'Glycerine Production and Refining,' J. Am. Oil Chem. Soc. 35, 615 (1958) Tung, H. H., and R. S. H. Mah; 'Modeling Liquid Mass-transfer in Higee Seperation Process,' Chem. Eng. Commun., 39, 147 (1985) Wang, M., H. K. Zou, L. Shao and J. F. Chen; 'Controlling Factors and Mechanism of Preparing Needlelike CaCO3 Under High-gravity Environment,' Powder Technol., 142, 166 (2004) Whitman, W. G.; 'The Two-film Theory of Absoption,' Chem. Met. Eng., 29, 147 (1923) Wimmer, T.; 'Process for the Production of Fatty Acid Esters of Lower Alcohols,' U.S. Patent 5,399,731 (1995) Xiao, Q. G., X. Tao and J. F. Chen; 'Silica Nanotubes Based on Needle-like Calcium Carbonate: Fabrication and Immobilization for Glucose Oxidase,' Ind. Eng. Chem. Res., 46, 459 (2007) Yang, S. T., Y. M. Lo and D. B. Min; 'Xanthan Gum Fermentation by Xanthomonas Campestris Immobilized in a Novel Centrifugal Fibrous-bed Bioreactor,' Biotechnol. Progr., 12, 630 (1996) Zheng, C., K. Guo, C. Yang and N. C. Gardner; 'Pressure Drop of Centripetal Gas Flow through Rotating Beds,' Ind. Eng. Chem. Res., 39, 829 (2000) Zhao, R. H., C. P. Li, F. Guo and J. F. Chen; 'Scale-up Preparation of Organized Mesoporous Alumina in a Rotating Packed Bed,' Ind. Eng. Chem. Res., 46, 3317 (2007) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37980 | - |
| dc.description.abstract | 旋轉填充床是程序強化的重要項目之ㄧ,係以離心力取代重力場而使得系統操作範圍變廣,質傳效果也大幅提升。本實驗即是使用旋轉填充床的高質傳係數特質,來解決從甘油中氣提甲醇遇到之質傳效率不佳的瓶頸;文中探討了氣量、液量、轉速、黏度、溫度及濃度等變數對氣提百分比和氣膜質傳係數的影響。
實驗結果顯示,於重量百分濃度為2%及8%實驗中,隨著轉速增加(1200至2400rpm)、氣體流量增加(40至50L/min)、溫度升高(30至60℃),氣提百分比會有約3.4倍之增加;於重量百分濃度為0.5%實驗中,液體流量減少(200至100mL/min)而使氣量/液量比例增加,亦讓系統有較大的能力帶出大量甲醇,進而提升了氣提效率約2倍,另外設定溫度由30℃升至60℃可使氣液平衡常數增加約3倍,因此升溫可有效提升2-3倍的氣提效率。 於本研究中提出一可適用於高黏度系統及水相系統之所有醇類迴歸式如下,實驗數據包含本研究、本實驗室及公開文獻資料。 在高溫、高濃度之系統下實驗所得之氣液進口溫度以及氣液出口溫度之變化極大,其中系統溫度變化來自於空氣中的水由氣相進入甘油而產生放熱現象,以及甲醇由液相氣提至氣相的吸熱現象,也因此造成系統設定溫度會高於實際氣液質傳時之溫度,故部分高溫高濃度所求得KGa屬保守估計值,實際KGa應高於計算結果。 | zh_TW |
| dc.description.abstract | A so-called rotating packed bed (RPB) which substitutes the centrifugal force for gravitational force plays an important role in the field of “process intensification.” With the help of centrifugal force, a wider operating range and better mass transfer efficiency could be expected. As a result, in this research, with the trait of high mass transfer coefficient in an RPB, the bottle neck of stripping methanol from viscous glycerol solution could be improved. The gas flow rate, liquid flow rate, rotor speed, liquid viscosity, temperature, and liquid concentration were taken into consideration as the operating variables to pursue better stripping ratio and mass transfer coefficient in the system.
According to the experimental results of 2% and 8% (methanol/glycerol) data sets, as the rotor speed increased from 1200 to 2400 rpm, gas flow rate increased from 40 to 50 L/min, and temperature increased from 30 to 60℃, the stripping ratio could be raised to 3.4 folds. As considering the ratio of (gas flow rate/liquid flow rate) in 0.5% data, we could find that while the liquid flow rate decreased from 200 to 100 mL/min, there would be a higher ratio of (gas flow rate/liquid flow rate) and a higher capacity to remove methanol from the liquid phase to gas phase. Thus the stripping efficiency could be found to be doubled. On the other hand, equilibrium constant became triple by increasing temperature from 30 to 60℃, and 2~3 times of stripping efficiency was obtained. In this research, a correlation applicable to both aqueous and viscous systems is presented as: It was found that a significant temperature variation might be noted within the packed bed, especially with high temperature and concentrated cases. This might be due to the exothermic phenomena of methanol evaporation and the endothermic process of water (humidity) moving from gas phase to liquid (glycerol) phase. Therefore, because of choosing the oven temperature as a reference one, the KGa estimated from the correlation shown above would be a conservative one. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T15:54:40Z (GMT). No. of bitstreams: 1 ntu-97-R95524012-1.pdf: 1661908 bytes, checksum: 3de20f6cac0f6e0b788a987278e12a4f (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 摘 要 I
Abstract III 目 錄 V 圖 目 錄 VII 表 目 錄 XI 第一章 緒論 1 第二章 文獻回顧 5 2-1 生質柴油 5 2-1-1 什麼是生質柴油 5 2-1-2 生質柴油之生產/純化程序 6 2-1-3 目前生產程序所遇到之問題/解決方案 7 2-2 旋轉填充床 9 2-2-1旋轉填充床之簡介 9 2-2-2旋轉填充床之起源 14 2-2-3 旋轉填充床之特性 15 2-2-4 旋轉填充床之優點及其應用 27 第三章 實驗與分析方法 37 3-1 實驗裝置 37 3-2 實驗流程 40 3-3 氣提百分比分析 40 3-4 總括氣膜體積質傳係數分析 43 3-4-1亨利常數及溫度效應的表示 43 3-4-2雙膜理論 (Two-Film Theory) 46 3-4-3 氣膜質傳係數之求法 49 3-5 物性資料實驗 52 3-5-1 氣液平衡常數 (equilibrium constant) 52 3-5-2 液體密度 (liquid density) 55 3-5-3 液體黏度 (liquid viscosity) 57 3-5-4 液體表面張力 (liquid surface tension) 59 3-5-5 氣體擴散係數 (gas diffusivity coefficient) 61 第四章 結果討論 62 4-1 氣提百分比 62 4-1-1 轉速、氣體流量的影響 64 4-1-2 轉速、液體流量的影響 69 4-1-3 溫度的影響 71 4-1-4 質傳效應與平衡常數的競爭 74 4-2 總括氣膜體積質傳係數 79 4-2-1 轉速的影響 79 4-2-2 氣體流量的影響 83 4-2-3 液體流量的影響 87 4-2-4 黏度的影響 88 4-3 迴歸式—總括氣膜體積質傳係數 90 4-3-1 無因次群的選擇 92 4-3-2 平衡常數效應(甲醇/甘油系統) 96 4-3-3 端效應 (end effect) 98 4-3-4 填充物性質效應 100 4-3-5 平衡常數效應(表4-3.1所含全部資料點) 102 4-3-6 群組物性 104 4-3-7 中心到內徑之端效應 (Vi/Vt) 110 4-3-8 驗證 112 4-3-9 各無因次群指數/係數的比較 114 4-4 溫度與高濃度效應 117 4-4-1 溫度效應 117 4-4-2 高濃度效應 122 第五章 結論 124 參考文獻 127 符號說明 138 附錄A 甲醇/甘油溶液之實驗數據 144 附錄B 甲醇/水系統之實驗數據 150 附錄C 甲醇/水溶液系統之溫差計算 161 附錄D 系統中之霧氣干擾偵測 166 附錄E 空氣濕度對甲醇/甘油系統的影響 170 附錄F 非球形填充物之等體積球直徑(dp)的求法 174 附錄G 以Matlab求迴歸式之程式碼 175 附錄H 溫度計校正 184 | |
| dc.language.iso | zh-TW | |
| dc.subject | 氣提 | zh_TW |
| dc.subject | 旋轉填充床 | zh_TW |
| dc.subject | 甲醇 | zh_TW |
| dc.subject | 氣膜質傳係數 | zh_TW |
| dc.subject | 氣提百分比 | zh_TW |
| dc.subject | 高黏度 | zh_TW |
| dc.subject | methanol | en |
| dc.subject | rotating packed bed | en |
| dc.subject | gas-side mass transfer coefficient | en |
| dc.subject | stripping ratio | en |
| dc.subject | high viscosity | en |
| dc.subject | stripping | en |
| dc.title | 旋轉填充床之高黏度系統中氣提甲醇 | zh_TW |
| dc.title | Stripping Methanol from a High Viscosity System by a Rotating Packed Bed | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 戴怡德(Clifford Yi-Der Tai),林佳璋(Chia-Chang Lin),陳昱劭(Yu-Shao Chen) | |
| dc.subject.keyword | 旋轉填充床,氣膜質傳係數,氣提百分比,高黏度,氣提,甲醇, | zh_TW |
| dc.subject.keyword | rotating packed bed,gas-side mass transfer coefficient,stripping ratio,high viscosity,stripping,methanol, | en |
| dc.relation.page | 187 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-06-18 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 1.62 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
