請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37976完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 牟中原(Chung-Yuan Mou) | |
| dc.contributor.author | Han-Chou Lin | en |
| dc.contributor.author | 林漢洲 | zh_TW |
| dc.date.accessioned | 2021-06-13T15:54:27Z | - |
| dc.date.available | 2008-06-24 | |
| dc.date.copyright | 2008-06-24 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-06-18 | |
| dc.identifier.citation | Reference
(1)B. G. Malmstrom, L. E. A. a. B. R. Enzymes, Academic Press, New York, 1975. (2)Valentine, J. S.; Wertz, D. L.; Lyons, T. J.; Liou, L. L.; Goto, J. J.; Gralla, E. B. Curr. Opin. Chem. Biol. 1998, 2, 253. (3)Cowan, J. A. Inorganic Biochemistry, An Introduction; 2nd ed.; Wiley-VCH: New York, 1997. (4)Valentine, J. S.; Defreitas, D. M. J. Chem. Educ. 1985, 62, 990. (5)Lippard, S. J.; Berg, J. M. Principles of Bioinorganic Chemistry, University Science Books, Mill Valley, CA, 1994. (6)Hart, P. J.; Balbirnie, M. M.; Ogihara, N. L.; Nersissian, A. M.; Weiss, M. S.; Valentine, J. S.; Eisenberg, D. Biochemistry 1999, 38, 2167. (7)Tabbi, G.; Driessen, W. L.; Reedijk, J.; Bonomo, R. P.; Veldman, N.; Spek, A. L. Inorg. Chem. 1997, 36, 1168. (8)Tainer, J. A.; Getzoff, E. D.; Beem, K. M.; Richardson, J. S.; Richardson, D. C. J. Mol. Biol. 1982, 160, 181. (9)Sanchez-Capelo, A. Cytokine & Growth Factor Reviews 2005, 16, 15. (10)Starkov, A. A.; Fiskum, G.; Chinopoulos, C.; Lorenzo, B. J.; Browne, S. E.; Patel, M. S.; Beal, M. F. J. Neurosci. 2004, 24, 7779. (11)Tretter, L.; Adam-Vizi, V. J. Neurosci. 2004, 24, 7771. (12)Curtin, J. F.; Donovan, M.; Cotter, T. G. Journal of Immunological Methods 2002, 265, 49. (13)Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T. Pure Appl. Chem. 1985, 57, 603. (14)Breck, D. W. Zeolites Molecular Sieves; John Wiley and Sons: New York, 1974. (15)Szostak, R. Molecular Sieves, Principles of synthesis and Identification; Van Nostrand Reinfold: New York, 1989. (16)Wilson, S. T.; Lok, B. M.; Messina, C. A.; Cannan, T. R.; Flanigen, E. M. J. Am. Chem. Soc. 1982, 104, 1146. (17)Davis, M. E.; Saldarriaga, C.; Montes, C.; Garces, J.; Crowder, C. Nature 1988, 331, 698. (18)Freyhardt, C. C.; Tsapatsis, M.; Lobo, R. F.; Balkus, K. J.; Davis, M. E. Nature 1996, 381, 295. (19)Iler, R. K. The Chemistry of Silica John Wiley & Sons, 1979. (20)Pinnavaia, T. J. Science 1983, 220, 365. (21)Yanagisawa, T.; Shimizu, T.; Kuroda, K.; Kato, C. Bull. Chem. Soc. Jpn. 1990, 63, 988. (22)Corma, A.; Perezpariente, J.; Fornes, V.; Rey, F.; Rawlence, D. Applied Catalysis 1990, 63, 145. (23)Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W.; Mccullen, S. B.; Higgins, J. B.; Schlenker, J. L. J. Am. Chem. Soc. 1992, 114, 10834. (24)Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C. U.S. Patent 5,098,684, 1992. (25)Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Nature 1992, 359, 710. (26)Vartuli, J. C.; Kresge, C. T.; Leonowicz, M. E.; Chu, A. S.; Mccullen, S. B.; Johnsen, I. D.; Sheppard, E. W. Chem. Mater. 1994, 6, 2070. (27)Fontell, K. Colloid. Polym. Sci. 1990, 268, 264. (28)Luzzati, V.; Tardieu, A.; Gulikkrz.T; Rivas, E.; Reisshus.F Nature 1968, 220, 485. (29)Vartuli, J. C. et al Designed Synthesis of Mesoporous Molecular Sieve Systems Using Surfactant -Directing Agents Chapter 1, Advanced Catalysts, 1996. (30)Huo, Q. S.; Margolese, D. I.; Stucky, G. D. Chem. Mater. 1996, 8, 1147. (31)Beck, J. S.; Vartuli, J. C.; Kennedy, G. J.; Kresge, C. T.; Roth, W. J.; Schramm, S. E. Chem. Mater. 1994, 6, 1816. (32)Raimondi, M. E.; Seddon, J. M. Liq. Cryst. 1999, 26, 305. (33)Attard, G. S.; Glyde, J. C.; Goltner, C. G. Nature 1995, 378, 366. (34)Firouzi, A.; Atef, F.; Oertli, A. G.; Stucky, G. D.; Chmelka, B. F. J. Am. Chem. Soc. 1997, 119, 3596. (35)Inagaki, S.; Fukushima, Y.; Kuroda, K. Journal of the Chemical Society-Chemical Communications 1993, 680. (36)Monnier, A.; Schuth, F.; Huo, Q.; Kumar, D.; Margolese, D.; Maxwell, R. S.; Stucky, G. D.; Krishnamurty, M.; Petroff, P.; Firouzi, A.; Janicke, M.; Chmelka, B. F. Science 1993, 261, 1299. (37)Steel, A.; Carr, S. W.; Anderson, M. W. Journal of the Chemical Society-Chemical Communications 1994, 1571. (38)Huo, Q. S.; Margolese, D. I.; Ciesla, U.; Feng, P. Y.; Gier, T. E.; Sieger, P.; Leon, R.; Petroff, P. M.; Schuth, F.; Stucky, G. D. Nature 1994, 368, 317. (39)Tanev, P. T.; Pinnavaia, T. J. Science 1995, 267, 865. (40)Bagshaw, S. A.; Prouzet, E.; Pinnavaia, T. J. Science 1995, 269, 1242. (41)Zhao, D. Y.; Huo, Q. S.; Feng, J. L.; Chmelka, B. F.; Stucky, G. D. J. Am. Chem. Soc. 1998, 120, 6024. (42)Jing, H.; Li, X. F.; Evans, D. G.; Duan, X.; Li, C. Y. J. Mol. Catal. B: Enzymol. 2000, 11, 45. (43)Balkus, K. J.; Diaz, J. F. Abstracts of Papers of the American Chemical Society 1996, 212, 231. (44)Lei, C. H.; Shin, Y. S.; Liu, J.; Ackerman, E. J. J. Am. Chem. Soc. 2002, 124, 11242. (45)Fadnavis, N. W.; Bhaskar, V.; Kantam, M. L.; Choudary, B. M. Biotechnol. Progr. 2003, 19, 346. (46)Deere, J.; Magner, E.; Wall, J. G.; Hodnett, B. K. Biotechnol Prog 2003, 19, 1238. (47)Chong, A. S. M.; Zhao, X. S. Catal. Today 2004, 93-95, 293. (48)Dumitriu, E.; Secundo, F.; Patarin, J.; Fechete, L. J. Mol. Catal. B: Enzymol. 2003, 22, 119. (49)Deere, J.; Magner, E.; Wall, J. G.; Hodnett, B. K. Chem. Commun. 2001, 465. (50)Deere, J.; Magner, E.; Wall, J. G.; Hodnett, B. K. J. Phys. Chem. B 2002, 106, 7340. (51)Deere, J.; Magner, E.; Wall, J. G.; Hodnett, B. K. Catal. Lett. 2003, 85, 19. (52)Han, Y. J.; Watson, J. T.; Stucky, G. D.; Butler, A. J. Mol. Catal. B: Enzymol. 2002, 17, 1. (53)Lee, C. H.; Wong, S. T.; Lin, T. S.; Mou, C. Y. J. Phys. Chem. B 2005, 109, 775. (54)Takahashi, H.; Li, B.; Sasaki, T.; Miyazaki, C.; Kajino, T.; Inagaki, S. Chem. Mater. 2000, 12, 3301. (55)Takahashi, H.; Li, B.; Sasaki, T.; Miyazaki, C.; Kajino, T.; Inagaki, S. Microporous Mesoporous Mater. 2001, 44, 755. (56)Vinu, A.; Murugesan, V.; Tangermann, O.; Hartmann, M. Chem. Mater. 2004, 16, 3056. (57)Vinu, A.; Streb, C.; Murugesan, V.; Hartmann, M. J. Phys. Chem. B 2003, 107, 8297. (58)Wang, Y. J.; Caruso, F. Chem. Mater. 2005, 17, 953. (59)Washmon-Kriel, L.; Jimenez, V. L.; Balkus, K. J. J. Mol. Catal. B: Enzymol. 2000, 10, 453. (60)Xu, X.; Tian, B. Z.; Kong, J. L.; Zhang, S.; Liu, B. H.; Zhao, D. Y. Adv. Mater. 2003, 15, 1932. (61)Yiu, H. H. P.; Botting, C. H.; Botting, N. P.; Wright, P. A. PCCP 2001, 3, 2983. (62)Yiu, H. H. P.; Wright, P. A.; Botting, N. P. Microporous Mesoporous Mater. 2001, 44, 763. (63)Yiu, H. H. P.; Wright, P. A.; Botting, N. P. J. Mol. Catal. B: Enzymol. 2001, 15, 81. (64)Zhao, J. W.; Gao, F.; Fu, Y. L.; Jin, W.; Yang, P. Y.; Zhao, D. Y. Chem. Commun. 2002, 752. (65)Lin, Y. S.; Tsai, C. P.; Huang, H. Y.; Kuo, C. T.; Hung, Y.; Huang, D. M.; Chen, Y. C.; Mou, C. Y. Chem. Mater. 2005, 17, 4570. (66)Shih, P. C.; Lin, H. P.; Mou, C. Y. In Nanotechnology in Mesostructured Materials 2003; Vol. 146, p 557. (67)Faraone, A.; Liu, L.; Mou, C. Y.; Shih, P. C.; Copley, J. R. D.; Chen, S. H. J. Chem. Phys. 2003, 119, 3963. (68)Kaneda, M.; Tsubakiyama, T.; Carlsson, A.; Sakamoto, Y.; Ohsuna, T.; Terasaki, O.; Joo, S. H.; Ryoo, R. J. Phys. Chem. B 2002, 106, 1256. (69)https://engineering.purdue.edu/ChE/webpublications/bt/index.htm. (70)Breck, D. W. U.S. Patent 3,130,007 (1964). (71)Szilagyi, I.; Labadi, I.; Hernadi, K.; Palinko, I.; Fekete, I.; Korecz, L.; Rockenbauer, A.; Kiss, T. New J. Chem. 2005, 29, 740. (72)Beaucham.C; Fridovich.I Anal. Biochem. 1971, 44, 276. (73)Lin, H. P.; Mou, C. Y. J. Cluster Sci. 1999, 10, 271. (74)Shih, P. C.; Wang, J. H.; Mou, C. Y. Catal. Today 2004, 93-95, 365. (75)Han, Y.; Wu, S.; Sun, Y. Y.; Li, D. S.; Xiao, F. S.; Liu, J.; Zhang, X. Z. Chem. Mater. 2002, 14, 1144. (76)Lin, J. K.; Chou, C. K. Cancer Research 1992, 52, 385. (77)Taiwo, F. A.; Brophy, P. M.; Pritchard, D. I.; Brown, A.; Wardlaw, A.; Patterson, L. H. Eur. J. Biochem. 1999, 264, 434. (78)Herrera, B.; Fernandez, M.; Alvarez, A. M.; Roncero, C.; Benito, M.; Gil, J.; Fabregat, I. Hepatology 2001, 34, 548. (79)Madesh, M.; Hajnoczky, G. J. Cell Biol. 2001, 155, 1003. (80)Wan, J.; Bae, M. A.; Song, B. J. Experimental and Molecular Medicine 2004, 36, 71. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37976 | - |
| dc.description.abstract | 超氧歧化酵素(superoxide dismutase)普遍存在人體和動、植物細胞
中。一般生理上會引起ROS(Reactive Oxygen Species) Stress,進而傷害細胞、破壞DNA,甚至造成細胞凋亡(Apoptosis),在此超氧歧化酵素扮演著很重要的清除超氧離子的抗氧化作用。經由模擬超氧歧化酵素的活性中心結構,合成了一個與它相近的生物模擬CuZn 金屬錯合物(Biomimic complex),可以從UV, IR Spectrum 觀察出它的結構特徵,另外也由一種間接的競爭方式測出它的活性表現IC50 約為55 μM。In vitro 方面,藉由將這個生物模擬CuZn 金屬錯合物(Biomimic complex)附載到各種不同的中孔洞二氧化矽材料(Al-MCM41,48, MAS9, MSN…等),研究其附載上去之後的活性、穩定性表現,進一步再比較使用共價鍵和離子鍵等不同的修飾方法,在活性上的差異性,發現部份離子鍵的修飾法活性相對較高,甚至達到約3 倍的提昇效果。 In vivo方面,藉由本實驗室之前所開發出來的修飾有FITC螢光物 的中孔洞奈米粒子(MSN-FITC),之前已確定它具有進入細胞的能力, 於是將生物模擬CuZn金屬錯合物(Biomimic complex)修飾上去,進一步去研究它們在細胞中的毒性測試,活性表現、降低老鼠肝指數等方向。 | zh_TW |
| dc.description.abstract | Superoxide dismutases (SODs) are found in prokaryotes,
mitochondria iron and plants, and the copper -zinc SODs are most frequent in eukaryotic cells. Cells are normally able to prevent DNA damage and apoptosis by defending themselves against reactive oxygen species(ROS) damage through the use of enzymes such as superoxide dismutases and catalases. We have synthesized a biomimic complex of CuZnSOD by imitating of its structure of active site. The spectrum of UV and IR could provide the characteristics of this mimic complex, and activity assay counld be conducted via an indirect competition method. The IC 50 of the mimic complex is about 55μM. Immobilizing the mimic complex into NaY and mesoporous materials through electronic and covalent bond would result in different activity and stability in vitro. We found that materials modified with electronic bond would generally raise its activity due to their larger freedom than those modified with covalent bond. In vivo, MSN -FITC had been proved its cell permeability. Modifying MSN -FITC with mimic complex could enter cells to eliminate superoxide and to lower the live function index of male mice stressed by acetaminophen. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T15:54:27Z (GMT). No. of bitstreams: 1 ntu-97-R94223010-1.pdf: 4459251 bytes, checksum: 80a115203802f48dffdf6d3c1c0b3941 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | Contents
Figure Index iv Table Index viii Scheme Index ix Chapter 1 Introduction 1 1.1 Introduction of SOD and TGF-β1 1 1.1.1 Superoxide Dismutase enzyme (SOD) 1 1.1.2 Active Site of Superoxide Dismutase enzyme (SOD) 3 1.1.3 Catalytic reaction: 5 1.1.4 Some model complexes 7 1.1.5 Role of TGF-β1 9 1.1.6 TGF-β1 mediated oxidative stress 11 1.2 Introduction of materials used in this work 12 1.2.1 General introduction of porous material s 12 1.2.2 Synthesis mechanism of M41S materials 17 1.2.3 MSN (Mesoporous Silica Nanoparticls) 25 1.2.4 MCM41 25 1.2.5 MCM-48 and Al-MCM-48 28 1.2.6 SBA15 30 1.2.7 MAS9 31 1.2.8 Y zeolite (NaY) 32 1.3 Motivation of this work. 34 Chapter 2 Experiments 35 2.1 Characterization Methods and Instruments 35 2.2 Synthesis and immobilization of Mimic of Superoxide Dismutase 37 2.3 Activity of Superoxide Dismutase enzyme (SOD) 38 2.4 Synthesis of MSN-FITC 43 2.5 Synthesis of Al-MCM-41 46 2.6 Synthesis of Al-MCM-48 (Si/Al=37) 47 2.7 Synthesis of MAS975 (Si/Al=25) 47 2.8 Synthesis of SBA15 48 2.9 Synthesis of SBA15-N3, Al-MCM41-N3, and MSN-FITC-N3 49 2.10 Synthesis of SBA15-CuIm, Al-MCM41-CuIm, and MSN-FITC- CuIm 50 2.11 Synthesis of SBA15-CuImZn, Al-MCM41-CuImZn, and MSN-FITC- CuImZn 50 2.12 Synthesis of SBA15-Linker 51 2.13 Synthesis of SBA15-COOH (deprotection) 51 2.14 Synthesis of SBA15-NiCpx 52 2.15 Synthesis of SBA15-NiCpx-SOD 52 2.16 In vivo activity assay A: Hep 3B cell Model 53 2.17 In vivo activity assay B: Recovery of APAP diseased mice liver 54 Chapter 3 Results and Discussion 56 3.1 UV-Vis 56 3.2 IR 64 3.3 BET isotherm 69 3.4 EPR 77 3.5 Hydrothermal 85 3.6 Activity 88 3.7 TGA (Thermal Gravimetric Analysis) 90 3.8 Inhibition of apoptosis induced by transforming growth factor β1 (TGF-β1) (cell model) 98 3.9 Inhibition of APAP induced liver function index - GOT & GPT in BALB/c male mice (animal model) 101 Chapter 4 Conclusions and Outlook 103 Reference 105 | |
| dc.language.iso | en | |
| dc.subject | 生物模擬 | zh_TW |
| dc.subject | 中孔洞 | zh_TW |
| dc.subject | 超氧歧化酵素 | zh_TW |
| dc.subject | Biomimic | en |
| dc.subject | Superoxide dismutase | en |
| dc.subject | Mesoporous | en |
| dc.title | 中孔洞二氧化矽材料附載生物模擬超氧歧化酵素 | zh_TW |
| dc.title | Immobilization of Biomimic complex of
Superoxide Dismutase in Mesoporous Material | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳昭岑(Chao-Tsen Chen),周成功(Chen-Kung Chou) | |
| dc.subject.keyword | 超氧歧化酵素,中孔洞,生物模擬, | zh_TW |
| dc.subject.keyword | Superoxide dismutase,Mesoporous,Biomimic, | en |
| dc.relation.page | 123 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-06-18 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 化學研究所 | zh_TW |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 4.35 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
