請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37973完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林長平 | |
| dc.contributor.author | Hsin-I Tseng | en |
| dc.contributor.author | 曾欣怡 | zh_TW |
| dc.date.accessioned | 2021-06-13T15:54:16Z | - |
| dc.date.available | 2016-08-17 | |
| dc.date.copyright | 2011-08-17 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-10 | |
| dc.identifier.citation | Achard, P., Herr, A., Baulcombe, D.C., and Harberd, N.P. (2004). Modulation of floral development by a gibberellin-regulated microRNA. Development 131, 3357-3365.
Amiteye, S., Corral, J.M., and Sharbel, a.T.F. (2011). Overview of the potential of microRNAs and their target gene detection for cassava (Manihot esculenta) improvement. Academic Journals 10(14), 2562-2573. Aravin, A., Gaidatzis, D., Pfeffer, S., Lagos-Quintana, M., Landgraf, P., Iovino, N., Morris, P., Brownstein, M.J., Kuramochi-Miyagawa, S., Nakano, T., et al. (2006). A novel class of small RNAs bind to MILI protein in mouse testes. Nature 442, 203-207. Aukerman, M.J., and Sakai, H. (2003). Regulation of Flowering Time and Floral Organ Identity by a MicroRNA and Its APETALA2-Like Target Genes. The Plant Cell Online 15, 2730-2741. Bai, X., Zhang, J., Ewing, A., Miller, S.A., Jancso Radek, A., Shevchenko, D.V., Tsukerman, K., Walunas, T., Lapidus, A., Campbell, J.W., et al. (2006). Living with Genome Instability: the Adaptation of Phytoplasmas to Diverse Environments of Their Insect and Plant Hosts. J Bacteriol 188, 3682-3696. Bowyer, J., Atherton, J., Teakle, D., and A Ahern, G. (1969). Myooplasma-Like Bodies in Plants Affected by Legume Little Leaf, tomato Big Bud, and Lucerne Witches' Broom Diseases. Australian Journal of Biological Sciences 22, 271-274. Boyko, A., Kathiria, P., Zemp, F.J., Yao, Y., Pogribny, I., and Kovalchuk, I. (2007). Transgenerational changes in the genome stability and methylation in pathogen-infected plants: (virus-induced plant genome instability). Nucleic Acids Res 35, 1714-1725. Chen, W.-Y., and Lin, C.-P. (2011). Characterization of Catharanthus roseus Genes Regulated Differentially by Peanut Witches’ Broom Phytoplasma Infection. Journal of Phytopathology, no-no. Chen, Z.J., and Ni, Z. (2006). Mechanisms of genomic rearrangements and gene expression changes in plant polyploids. Bioessays 28, 240-252. Coen, E., and Meyerowitz, E. (1991). The war of the whorls: genetic interactions controlling flower development. Nature Sep 5, 31-37. Ćurković Perica, M. (2008). Auxin-treatment induces recovery of phytoplasma-infected periwinkle. Journal of Applied Microbiology 105, 1826-1834. Ćurković Perica, M., Lepeduš, H., and Šeruga Musić, M. (2007). Effect of indole-3-butyric acid on phytoplasmas in infected Catharanthus roseus shoots grown in vitro. FEMS Microbiology Letters 268, 171-177. Davey, J.E., Van Staden, J., and De Leeuw, G.T.N. (1981). Endogenous cytokinin levels and development of flower virescence in Catharanthus roseus infected with mycoplasmas. Physiological Plant Pathology 19, 193-200. De Luca, V., Capasso, C., Capasso, A., Pastore, M., and Carginale, V. (2010). Gene expression profiling of phytoplasma-infected Madagascar periwinkle leaves using differential display. Molecular Biology Reports 38, 2993-3000. de Montaigu, A., Tóth, R., and Coupland, G. (2010). Plant development goes like clockwork. Trends Genet July, 296-306. Ditta, G., Pinyopich, A., Robles, P., Pelaz, S., and Yanofsky, M.F. (2004). The SEP4 Gene of Arabidopsis thaliana Functions in Floral Organ and Meristem Identity. Current Biology 14, 1935-1940. Doi, Y., Teranaka, M., Yora, K., and Asuyama, H. (1967). Mycoplasma-or PLT group-like microorganisms found in the phloem elements of plants infected with mulberry dwarf, potato witches¡¦ broom, aster yellows, or paulownia witches¡¦ broom. Ann Phytopathol Soc Jpn 33, 259-266. Freitag, J.H. (1964). Interaction and mutual suppression among three strains of aster yellows virus. Virology 24, 401-413. Goecks, J., Nekrutenko, A., Taylor, J., and Team, T.G. (2010). Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 11, R86. group, I.P.S.W.T.-P.t. (2004). 'Candidatus Phytoplasma', a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. Int J Syst Evol Microbiol 54, 1243-1255. Heo, J.B., and Sung, S. (2011). Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science 331, 76-79. Himeno, M., Neriya, Y., Minato, N., Miura, C., Sugawara, K., Ishii, Y., Yamaji, Y., Kakizawa, S., Oshima, K., and Namba, S. (2011). Unique morphological changes in plant pathogenic phytoplasma-infected petunia flowers are related to transcriptional regulation of floral homeotic genes in an organ-specific manner. The Plant Journal, no-no. Hoshi, A., Oshima, K., Kakizawa, S., Ishii, Y., Ozeki, J., Hashimoto, M., Komatsu, K., Kagiwada, S., Yamaji, Y., and Namba, S. (2009). A unique virulence factor for proliferation and dwarfism in plants identified from a phytopathogenic bacterium. Proceedings of the National Academy of Sciences 106, 6416-6421. Huang, T.-Y. (2009). Cloning and analysis of dnaB1 and dnaG genes of Peanut Witches' Broom Phytoplasma. In Dep Plant Path Microbio (Taipei, National Taiwan University). Junqueira, A., Bedendo, I., and Pascholati, S. (2004). Biochemical changes in corn plants infected by the maize bushy stunt phytoplasma. Physiological and Molecular Plant Pathology 65, 181-185. Kaltenbach, M., Schröder, G., Schmelzer, E., Lutz, V., and Schröder, J. (1999). Flavonoid hydroxylase from Catharanthus roseus: cDNA, heterologous expression, enzyme properties and cell-type specific expression in plants. The Plant Journal 19, 183-193. Kitamura, Y., Hosokawa, M., Uemachi, T., and Yazawa, S. (2009). Selection of ABC genes for candidate genes of morphological changes in hydrangea floral organs induced by phytoplasma infection. Scientia Horticulturae 122, 603-609. Kube, M., Schneider, B., Kuhl, H., Dandekar, T., Heitmann, K., Migdoll, A., Reinhardt, R., and Seemuller, E. (2008). The linear chromosome of the plant-pathogenic mycoplasma 'Candidatus Phytoplasma mali'. BMC Genomics 9, 306. Law, J.A., and Jacobsen, S.E. (2010). Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11, 204-220. Lee, I.-M., Davis, R.E., and Gundersen-Rindal, D.E. (2000). PHYTOPLASMA: Phytopathogenic Mollicutes1. Annual Review of Microbiology 54, 221-255. Lee, L.M., Gundersen-Rindal, D.E., Davis, R.E., and Bartoszyk, I.M. (1998). Revised classification scheme of phytoplasmas based on RFLP analyses of 16SrRNA and ribosomal protein gene sequences. Int J Syst Bacteriol 48, 1153. Leljak-Levanić, D., Ježić, M., Cesar, V., Ludwig-Müller, J., Lepeduš, H., Mladinić, M., Katić, M., and Ćurković-Perica, M. (2010). Biochemical and epigenetic changes in phytoplasma-recovered periwinkle after indole-3-butyric acid treatment. Journal of Applied Microbiology 109, 2069-2078. Mallory, A.C., and Vaucheret, H. (2006). Functions of microRNAs and related small RNAs in plants. Nat Genet. Metzker, M.L. (2010). Sequencing technologies [mdash] the next generation. Nat Rev Genet 11, 31-46. Murray, R.G.E., and Schleifer, K.H. (1994). Taxonomic Notes: A Proposal for Recording the Properties of Putative Taxa of Procaryotes. Int J Syst Bacteriol 44, 174-176. Musetti, R., di Toppi, L.S., Martini, M., Ferrini, F., Loschi, A., Favali, M.A., and Osler, R. (2005). Hydrogen peroxide localization and antioxidant status in the recovery of apricot plants from European Stone Fruit Yellows. European Journal of Plant Pathology 112, 53-61. Musetti, R., Favali, M.A., and Pressacco, L. (2000). Histopathology and polyphenol content in plants infected by phytoplasmas. Cytobios 102, 133-147 Navarro, L., Dunoyer, P., Jay, F., Arnold, B., Dharmasiri, N., Estelle, M., Voinnet, O., and Jones, J.D.G. (2006). A Plant miRNA Contributes to Antibacterial Resistance by Repressing Auxin Signaling. Science 312, 436-439. Oshima, K., Kakizawa, S., Nishigawa, H., Jung, H.-Y., Wei, W., Suzuki, S., Arashida, R., Nakata, D., Miyata, S.-i., Ugaki, M., et al. (2004). Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. Nat Genet 36, 27-29. Phyllis (2010). Phytoplasma. Piovan, A., and Filippini, R. (2007). Anthocyanins in Catharanthus roseus in vivo and in vitro: a review. Phytochemistry Reviews 6, 235-242. Pracros, P., Renaudin, J., Eveillard, S., Mouras, A., and Hernould, M. (2006). Tomato Flower Abnormalities Induced by Stolbur Phytoplasma Infection Are Associated with Changes of Expression of Floral Development Genes. Molecular Plant-Microbe Interactions 19, 62-68. Schneider, B., Seemuller, E., Smart, C., and Kirkpatrick, B. (1995). Phylogenetic classification of plant pathogenic mycoplasma-like organisms or phytoplasmas. Molecular and diagnostic procedures in mycoplasmology 1, 369-380. Schwarz-Sommer, Z., Huijser, P., Nacken, W., Saedler, H., and Sommer, H. (1990). Genetic Control of Flower Development by Homeotic Genes in Antirrhinum majus. Science 250, 931-936. Seemüller, E., Marcone, C., Lauer, U., Ragozzino, A., and Göschl, M. (1998). Current status of molecular classification of the phytoplasmas. J Plant Pathol 80, 3. Seemüller, E., Schneider, B., Mäurer, R., Ahrens, U., and Daire, X. (1994). Phylogenetic classification of phytopathogenic mollicutes by sequence analysis of 16S ribosomal DNA. Int J Syst Bacteriol 44, 440. Shendure, J., and Ji, H. (2008). Next-generation DNA sequencing. Nat Biotech 26, 1135-1145. Su, Y.T. (2010). The correlation of symptom development in phyllod and virescence with gene expression in floral organ identity and pigment synthesis and with phytoplasma accumulation in phytoplasma-infected Catharanthus roseus. In Dep Plant Path Microbio (Taipei, National Taiwan University). Sunkar, R., and Zhu, J.-K. (2007). Micro RNAs and Short-interfering RNAs in Plants. Journal of Integrative Plant Biology 49, 817-826. Tan, P.Y., and Whitlow, T. (2001). Physiological responses of Catharanthus roseus (periwinkle) to ash yellows phytoplasmal infection. New Phytologist 150, 757-769. Theiszen, G., and Saedler, H. (2001). Plant biology: Floral quartets. Nature 409, 469-471. Tran-Nguyen, L.T.T., Kube, M., Schneider, B., Reinhardt, R., and Gibb, K.S. (2008). Comparative Genome Analysis of 'Candidatus Phytoplasma australiense' (Subgroup tuf-Australia I; rp-A) and 'Ca. Phytoplasma asteris' Strains OY-M and AY-WB. J Bacteriol 190, 3979-3991. Wada, Y., Miyamoto, K., Kusano, T., and Sano, H. (2004). Association between up-regulation of stress-responsive genes and hypomethylation of genomic DNA in tobacco plants. Mol Genet Genomics 271, 658-666. Weigel, D., Alvarez, J., Smyth, D., Yanofsky, M., and Meyerowitz, E. (1992). LEAFY controls floral meristem identity in Arabidopsis. Cell May 29, 843-859. Wellmer, F., and Riechmann, J.L. (2010). Gene networks controlling the initiation of flower development. Trends in Genetics 26, 519-527. Yang, I.L. (1983). Host responses of peanut witches_ broom disease. J Agric Res China 34, 464-468. Yang, I.L. (1985). Dodder transmission and microscope observation of peanut's witches broom disease. NatlSciCouncMounthly, R O C 11, 821-826. Yao, Y., Bilichak, A., Golubov, A., and Kovalchuk, I. (2011). Local infection with oilseed rape mosaic virus promotes genetic rearrangements in systemic Arabidopsis tissue. Mutat Res 709-710, 7-14. Zhang, H., and Zhu, J.-K. (2011). RNA-directed DNA methylation. Current Opinion in Plant Biology 14, 142-147. Zhao, Y., Sun, Q., Wei, W., Davis, R.E., Wu, W., and Liu, Q. (2009). 'Candidatus Phytoplasma tamaricis', a novel taxon discovered in witches'-broom-diseased salt cedar (Tamarix chinensis Lour.). Int J Syst Evol Microbiol, ijs.0.010413-010410. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37973 | - |
| dc.description.abstract | 植物菌質體是一種沒有細胞壁且無法純培養的絕對寄生菌,在世界各地上造成許多重要的經濟作物病害。花生簇葉病植物菌質體感染日日春後會造成花器發育不正常,包括花瓣褪色、花器綠化、葉片化等病徵。由於目前花生簇葉病植物菌質體和日日春皆缺乏完整基因體的資訊,因此對於植物菌質體如何造成這些花部型態改變的原因至今瞭解不多。本研究是利用次世代高通量定序 (Next Generation Sequencing, NGS) 的方式針對日日春於感染花生簇葉病植物菌質體後其花器RNA 及small RNA 表現差異進行分析,目的在探討植物菌質體感染之後日日春花器病徵造成的原因。次世代高通量定序在分析轉錄組 (transcriptome) 上具有快速和高通量的優勢,並且可以應用在非模式物種轉錄組的分析。利用NGS定序的結果顯示,經由重新重組 (de novo assembly) 的方式,在健康花器和罹病之花器的轉錄組中重組成功率達85.9%,總計重組出60,580 contigs,且平均長度為1kb多的基因序列。進一步將日日春轉錄組和阿拉柏芥轉錄蛋白資料庫經由BLAST比對進行基因註解,結果顯示日日春轉錄組比對到的序列長度分佈和阿拉柏芥資料庫很相似,日日春轉錄組基因序列之完整度也比日日春EST 資料庫的基因序列高。藉由阿拉柏芥gene ontology (GO) 的資料庫進行日日春轉錄組分類後,從中挑選出有差異性表現的基因,結果發現在罹病之花器中和抗病相關、煙中化合物 (karrikin)、葉綠體及光合作用相關基因之基因表現量會上升。在small RNA 分析部分,經由比較日日春健康花器和罹病之花器的small RNA長度分佈,結果發現在罹病花器中24-nt small RNA 的數量會大量下降。本研究統計出在日日春轉錄組中414 個基因可能和24-nt small RNA 經由RNA-directed DNA methylation (RdDM) 機制產生甲基化的功能有關,經由分類發現這些基因在罹病之花器表現量會上升而且主要和抗病及葉綠體的基因有關。進一步和罹病之花器的型態觀察做比較,結果發現這些基因上升的現象和罹病之花器具有光合作用能力和葉片化型態出現的特徵一致。另一方面在日日春轉錄組中發現有許多200-600 nt基因序列無法和阿拉柏芥轉錄蛋白資料庫比對到,推測可能為 non-coding RNA (ncRNA) 並具調控組蛋白甲基化功能的潛力。經由分析結果推測花生簇葉病植物菌質體的感染使得日日春轉錄體在24-nt small RNA下降,進而使得和RdDM 調控的有關基因表現量上升,表示植物菌質體可能藉由調控24-nt small RNA的表現,影響植物基因甲基化的能力,進而使得因為甲基化抑制的基因回復表現,此一推測未來仍需要進一步相關實驗進行驗證。由本研究結果得知利用次世代高通量定序進行的生物資訊分析策略,可以提供許多大量的基因資訊,對於研究植物和植物病原菌的交互作用關係是一種嶄新的研究方向。 | zh_TW |
| dc.description.abstract | Phytoplasmas are special bacteria that are obligated parasites on plants and cause severe damage on economical crops worldwide. The peanut witches-broom (PnWB) phytoplasma were caused significant floral malformation such as virescence, phyllody and petal discoloration in a numerous phytoplasma ideal host plant periwinkle (Catharanthus roseus). Studying of phytoplasmas-host interaction, however, is limited due to the lack of genome information of periwinkle plant. Next generation sequencing (NGS) is a new high-throughput sequencing technology that is rapid and economic on the genomic project, especially on non-model species. In this study, the whole transcriptome and small RNA profiles of the flower organs of the healthy and PnWB phytoplasma-infected periwinkles were investigated by NGS. The 85.9% successful rate of de novo assembly from periwinkle sequence reads are generated 60,580 contigs. The sequence analysis results showed the periwinkle sequences are similar to those in Arabidopsis coding sequence (CDS) database and more complete compared with Catharanthus EST database. Based on the gene ontology (GO) on classification roles with Arabidopsis CDS database, gene related to defense, photosynthesis, chloroplast, and karrikin were highly expressed in transcriptome of PnWB phytoplasma-infected flower profiles. In addition, the total number of 24-nt small RNA displayed dramatic decrease in PnWB phytoplasma-infected flower. Moreover, there were 414 candidate genes in periwinkle transcriptome that were likely associated with the 24-nt small RNAs and RNA-directed DNA methylation (RdDM); those genes were highly expressed in diseased organs and were associated with defense and chloroplast development. This results were consistent with the morphological phenotype between healthy and PnWB phytoplasma-infected flower organs that photosynthesis and chloroplast were developed in the phyllody of floral organ. Furthermore, the 200-600 nt non-coding RNA (ncRNA) were indentified in contigs that might involve in the histone methlyation of periwinkle. The results suggested that PnWB phytoplasma might inhibit the 24-nt small RNA biogenesis that caused the suppression of RdDM pathway to reactative the methlyated genes. In conclusion, this study provides a new vision to understand the disease mechanism between host and phytoplasma in the periwinkle plant by bioinformatics with powerful and fast high throughput technique. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T15:54:16Z (GMT). No. of bitstreams: 1 ntu-100-R98633021-1.pdf: 6873335 bytes, checksum: 8bb7d58fc3c5d0a0a49de7bb1f521942 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 口試委員審定書 II
致謝 III 中文摘要 V Abstract VII Contents IX 中文前言 1 Introduction 6 Materials and methods 12 Plant material, phytoplasma inoculation and disease development 12 Total RNA isolation 12 Semiquantitative reverse-transcriptional polymerase chain reaction 13 Small RNA preparation for next generation sequencing 14 Small RNA and transcriptome for next generation sequencing 14 Chlorophyll fluorescence screening 15 The stomata formation observation by microscopy 15 Analysis of the high throughput data of next generation sequencing 15 Gene expression of transcriptome in silico 16 Identification of contigs related to small RNAs 16 Results 17 Floral symptoms of PnWB phytoplasma-infected periwinkles 17 Phyllody floral organ have the functions of the leaf 17 Expression level of marker gene in diseased plants 18 The whole transcriptome NGS sequence and de novo assembly 19 Annotation of de novo assembly contigs with their functions 20 Identification of post-transcriptional gene silencing (PTGS) related genes in periwinkle 21 Identification of RNA-directed DNA methylation (RdDM)-related genes in periwinkles 22 Identification of floral-related genes in periwinkle 23 Differential gene expression between HF and S-4 floral organ in silico 24 24-nt small RNA population decreasing in S-4 small RNA profile 25 Identification of the candidate genes that regulated by RdDM 26 Discussion 28 Whole transcriptome de novo assembly and expression analysis of non-model species by NGS 28 The floral-related gene regulation 30 PnWB phytoplasma suppresses 24-nt small biogenesis that might affect the RdDM in epigenetic of periwinkles 32 The working hypothesis of reprogramming of floral morphological changing induced by PnWB phytoplasma 33 Reference 35 Tables and Figures 39 Supplementary Tables and Figures 62 | |
| dc.language.iso | en | |
| dc.subject | 次世代高通量定序 | zh_TW |
| dc.subject | 花生簇葉病植物菌質體 | zh_TW |
| dc.subject | 日日春 | zh_TW |
| dc.subject | 轉錄組 | zh_TW |
| dc.subject | next generation sequencing (NGS) | en |
| dc.subject | Catharanthus roseus | en |
| dc.subject | transcriptome | en |
| dc.title | 利用高通量定序分析日日春感染植物菌質體其RNA及small RNA之差異性 | zh_TW |
| dc.title | High-throughput transcriptome and small RNA analysis for studying phytoplasma infection on Catharanthus roseus using Next Generation Sequencing | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 林詩舜 | |
| dc.contributor.oralexamcommittee | 張宗仁,葉錫東,曾國欽,陳仁治 | |
| dc.subject.keyword | 次世代高通量定序,日日春,花生簇葉病植物菌質體,轉錄組, | zh_TW |
| dc.subject.keyword | next generation sequencing (NGS),Catharanthus roseus,transcriptome, | en |
| dc.relation.page | 98 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-10 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 植物病理與微生物學研究所 | zh_TW |
| 顯示於系所單位: | 植物病理與微生物學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 6.71 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
