請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37948
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蘇銘嘉(Ming-Jai Su) | |
dc.contributor.author | An-Sheng Lee | en |
dc.contributor.author | 李安生 | zh_TW |
dc.date.accessioned | 2021-06-13T15:52:49Z | - |
dc.date.available | 2008-08-13 | |
dc.date.copyright | 2008-08-13 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-06-24 | |
dc.identifier.citation | Akera, T., Ng, Y.C., 1991. Digitalis sensitivity of Na+,K(+)-ATPase, myocytes and the heart. Life Sci 48, 97-106.
Akhtar, M., Jazayeri, M.R., Sra, J., Blanck, Z., Deshpande, S., Dhala, A., 1993. Atrioventricular nodal reentry. Clinical, electrophysiological, and therapeutic considerations. Circulation 88, 282-295. ALLHAT Collaborative Research Group, 2000. Major cardiovascular events in hypertensive patients randomized to doxazosin vs chlorthalidone: the antihypertensive and lipid-lowering treatment to prevent heart attack trial (ALLHAT). JAMA 283, 1967-1975. Ankarcrona, M., Dypbukt, J.M., Bonfoco, E., Zhivotovsky, B., Orrenius, S., Lipton, S.A., Nicotera, P., 1995. Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron 15, 961-973. Apkon, M., Nerbonne, J.M., 1991. Characterization of two distinct depolarization-activated K+ currents in isolated adult rat ventricular myocytes. J Gen Physiol 97, 973-1011. Banerjee, A., Locke-Winter, C., Rogers, K.B., Mitchell, M.B., Brew, E.C., Cairns, C.B., Bensard, D.D., Harken, A.H., 1993. Preconditioning against myocardial dysfunction after ischemia and reperfusion by an alpha 1-adrenergic mechanism. Circ Res 73, 656-670. Becker, L.B., 2004. New concepts in reactive oxygen species and cardiovascular reperfusion physiology. Cardiovasc Res 61, 461-470. Benning, C.M., Kyprianou, N., 2002. Quinazoline-derived alpha1-adrenoceptor antagonists induce prostate cancer cell apoptosis via an alpha1-adrenoceptor-independent action. Cancer Res 62, 597-602. Bernier, M., Hearse, D.J., Manning, A.S., 1986. Reperfusion-induced arrhythmias and oxygen-derived free radicals. Studies with 'anti-free radical' interventions and a free radical-generating system in the isolated perfused rat heart. Circ Res 58, 331-340. Bers, D.M., 2002. Cardiac excitation-contraction coupling. Nature 415, 198-205. Bolli, R., Becker, L., Gross, G., Mentzer, R., Jr., Balshaw, D., Lathrop, D.A., 2004. Myocardial protection at a crossroads: the need for translation into clinical therapy. Circ Res 95, 125-134. Bolli, R., Triana, F., Jeroudi, M.O., 1989. Postischemic mechanical and vascular dysfunction (myocardial 'stunning' and microvascular 'stunning') and the effects of calcium-channel blockers on ischemia/reperfusion injury. Clin Cardiol 12, III16-25. Bonfoco, E., Krainc, D., Ankarcrona, M., Nicotera, P., Lipton, S.A., 1995. Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci U S A 92, 7162-7166. Bonfoco, E., Leist, M., Zhivotovsky, B., Orrenius, S., Lipton, S.A., Nicotera, P., 1996. Cytoskeletal breakdown and apoptosis elicited by NO donors in cerebellar granule cells require NMDA receptor activation. J Neurochem 67, 2484-2493. Braunwald, E., Kloner, R.A., 1982. The stunned myocardium: prolonged, postischemic ventricular dysfunction. Circulation 66, 1146-1149. Braunwald, E., Kloner, R.A., 1985. Myocardial reperfusion: a double-edged sword? J Clin Invest 76, 1713-1719. Braunwald, E., Maroko, P.R., 1974. The reduction of infarct size--an idea whose time (for testing) has come. Circulation 50, 206-209. Chang, W.L., Chung, C.H., Wu, Y.C., Su, M.J., 2004. The vascular and cardioprotective effects of liriodenine in ischemia-reperfusion injury via NO-dependent pathway. Nitric Oxide 11, 307-315. Chierchia, S., Deferrari, L., 2004. Cell transplantation: a novel perspective in the treatment of heart failure. Ital Heart J 5 Suppl 6, 108S-115S. Cleland, J.G., Khand, A., Clark, A., 2001. The heart failure epidemic: exactly how big is it? Eur Heart J 22, 623-626. Cohn, J.N., Archibald, D.G., Ziesche, S., Franciosa, J.A., Harston, W.E., Tristani, F.E., Dunkman, W.B., Jacobs, W., Francis, G.S., Flohr, K.H., Goldman, S., Cobb, F.R., Shah, P.M., Saunders, R., Fletcher, R.D., Loeb, H.S., Hughes, V.V., Baker, B., 1986. Effect of vasodilator therapy on mortality in chronic congestive heart failure. Results of a Veterans Administration Cooperative Study. N Engl J Med 314, 1547-1552. Consensus, 1999. Consensus recommendations for the management of chronic heart failure. On behalf of the membership of the advisory council to improve outcomes nationwide in heart failure. Am J Cardiol 83, 1A-38A. Courtney, C.H., McCance, D.R., Atkinson, A.B., Bassett, J., Ennis, C.N., Sheridan, B., Bell, P.M., 2003. Effect of the alpha-adrenergic blocker, doxazosin, on endothelial function and insulin action. Metabolism 52, 1147-1152. Demiryurek, A.T., Demiryurek, S., 2005. Cardiotoxicity of digitalis glycosides: roles of autonomic pathways, autacoids and ion channels. Auton Autacoid Pharmacol 25, 35-52. Forman, M.B., Puett, D.W., Virmani, R., 1989. Endothelial and myocardial injury during ischemia and reperfusion: pathogenesis and therapeutic implications. J Am Coll Cardiol 13, 450-459. Frey, N., Olson, E.N., 2003. Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol 65, 45-79. Frick, M.H., Halttunen, P., Himanen, P., Huttunen, M., Porsti, P., Pitkajarvi, T., Poyhonen, L., Pyykonen, M.L., Reinikainen, P., Salmela, P., Saraste, M., 1986. A long-term double-blind comparison of doxazosin and atenolol in patients with mild to moderate essential hypertension. Br J Clin Pharmacol 21 Suppl 1, 55S-62S. Gadsby, D.C., Nakao, M., Bahinski, A., 1989. Voltage dependence of transient and steady-state Na/K pump currents in myocytes. Mol Cell Biochem 89, 141-146. Galang, N., Sasaki, H., Maulik, N., 2000. Apoptotic cell death during ischemia/reperfusion and its attenuation by antioxidant therapy. Toxicology 148, 111-118. Gheorghiade, M., Pitt, B., 1997. Digitalis Investigation Group (DIG) trial: a stimulus for further research. Am Heart J 134, 3-12. Gonzalez-Juanatey, J.R., Iglesias, M.J., Alcaide, C., Pineiro, R., Lago, F., 2003. Doxazosin induces apoptosis in cardiomyocytes cultured in vitro by a mechanism that is independent of alpha1-adrenergic blockade. Circulation 107, 127-131. Gottlieb, R.A., Engler, R.L., 1999. Apoptosis in myocardial ischemia-reperfusion. Ann N Y Acad Sci 874, 412-426. Guo, J., Mitsuiye, T., Noma, A., 1997. The sustained inward current in sino-atrial node cells of guinea-pig heart. Pflugers Arch 433, 390-396. Gwag, B.J., Lobner, D., Koh, J.Y., Wie, M.B., Choi, D.W., 1995. Blockade of glutamate receptors unmasks neuronal apoptosis after oxygen-glucose deprivation in vitro. Neuroscience 68, 615-619. Hamill, O.P., Marty, A., Neher, E., Sakmann, B., Sigworth, F.J., 1981. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391, 85-100. Hamlin, R.L., Cruze, C.A., Mittelstadt, S.W., Kijtawornrat, A., Keene, B.W., Roche, B.M., Nakayama, T., Nakayama, H., Hamlin, D.M., Arnold, T., 2004. Sensitivity and specificity of isolated perfused guinea pig heart to test for drug-induced lengthening of QTc. J Pharmacol Toxicol Methods 49, 15-23. Hansen, P.R., 1995. Role of neutrophils in myocardial ischemia and reperfusion. Circulation 91, 1872-1885. Hauptman, P.J., Kelly, R.A., 1999. Digitalis. Circulation 99, 1265-1270. Hondeghem, L.M., Katzung, B.G., 1977. Time- and voltage-dependent interactions of antiarrhythmic drugs with cardiac sodium channels. Biochim Biophys Acta 472, 373-398. Hu, Z.W., Shi, X.Y., Hoffman, B.B., 1998. Doxazosin inhibits proliferation and migration of human vascular smooth-muscle cells independent of alpha1-adrenergic receptor antagonism. J Cardiovasc Pharmacol 31, 833-839. Hung, L.M., Chen, J.K., Huang, S.S., Lee, R.S., Su, M.J., 2000. Cardioprotective effect of resveratrol, a natural antioxidant derived from grapes. Cardiovasc Res 47, 549-555. Irisawa, H., Brown, H.F., Giles, W., 1993. Cardiac pacemaking in the sinoatrial node. Physiol Rev 73, 197-227. Isenberg, G., Klockner, U., 1982. Calcium tolerant ventricular myocytes prepared by preincubation in a 'KB medium'. Pflugers Arch 395, 6-18. James, T.N., 2002. Structure and function of the sinus node, AV node and His bundle of the human heart: part I-structure. Prog Cardiovasc Dis 45, 235-267. James, T.N., 2003. Structure and function of the sinus node, AV node and his bundle of the human heart: part II--function. Prog Cardiovasc Dis 45, 327-360. Josephson, I.R., Sanchez-Chapula, J., Brown, A.M., 1984. Early outward current in rat single ventricular cells. Circ Res 54, 157-162. Kajstura, J., Cheng, W., Reiss, K., Clark, W.A., Sonnenblick, E.H., Krajewski, S., Reed, J.C., Olivetti, G., Anversa, P., 1996. Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats. Lab Invest 74, 86-107. Kang, P.M., Haunstetter, A., Aoki, H., Usheva, A., Izumo, S., 2000. Morphological and molecular characterization of adult cardiomyocyte apoptosis during hypoxia and reoxygenation. Circ Res 87, 118-125. Kannel, W.B., Neaton, J.D., Wentworth, D., Thomas, H.E., Stamler, J., Hulley, S.B., Kjelsberg, M.O., 1986. Overall and coronary heart disease mortality rates in relation to major risk factors in 325,348 men screened for the MRFIT. Multiple Risk Factor Intervention Trial. Am Heart J 112, 825-836. Kaplan, N.M., 1988. Effects of antihypertensive therapy on cardiac function. Am Heart J 116, 260-264. Khatter, J.C., Agbanyo, M., Hoeschen, R.J., Navaratnam, S., Bains, R., 1986. Digitalis-induced mechanical toxicity: protection by slow Ca++ channel blockers. J Pharmacol Exp Ther 239, 206-210. Khatter, J.C., Agbanyo, M., Navaratnam, S., Nero, B., Hoeschen, R.J., 1989. Digitalis cardiotoxicity: cellular calcium overload a possible mechanism. Basic Res Cardiol 84, 553-563. Kitakaze, M., Hori, M., Morioka, T., Minamino, T., Takashima, S., Sato, H., Shinozaki, Y., Chujo, M., Mori, H., Inoue, M., Kamada, T., 1994. Alpha 1-adrenoceptor activation mediates the infarct size-limiting effect of ischemic preconditioning through augmentation of 5'-nucleotidase activity. J Clin Invest 93, 2197-2205. Kloner, R.A., Arimie, R.B., Kay, G.L., Cannom, D., Matthews, R., Bhandari, A., Shook, T., Pollick, C., Burstein, S., 2001. Evidence for stunned myocardium in humans: a 2001 update. Coron Artery Dis 12, 349-356. Kloner, R.A., Jennings, R.B., 2001a. Consequences of brief ischemia: stunning, preconditioning, and their clinical implications: part 1. Circulation 104, 2981-2989. Kloner, R.A., Jennings, R.B., 2001b. Consequences of brief ischemia: stunning, preconditioning, and their clinical implications: part 2. Circulation 104, 3158-3167. Kobayashi, T., Matsumoto, T., Ooishi, K., Kamata, K., 2004. Differential expression of alpha2D-adrenoceptor and eNOS in aortas from early and later stages of diabetes in Goto-Kakizaki rats. Am J Physiol Heart Circ Physiol 287, H135-143. Kodama, I., Nikmaram, M.R., Boyett, M.R., Suzuki, R., Honjo, H., Owen, J.M., 1997. Regional differences in the role of the Ca2+ and Na+ currents in pacemaker activity in the sinoatrial node. Am J Physiol 272, H2793-2806. Koren, G., Weiss, A.T., Hasin, Y., Appelbaum, D., Welber, S., Rozenman, Y., Lotan, C., Mosseri, M., Sapoznikov, D., Luria, M.H., Gotsman, M.S., 1985. Prevention of myocardial damage in acute myocardial ischemia by early treatment with intravenous streptokinase. N Engl J Med 313, 1384-1389. Lavie, C.J., Ventura, H.O., Messerli, F.H., 1991. Regression of increased left ventricular mass by antihypertensives. Drugs 42, 945-961. Lee, A.S., Su, M.J., 2008. Comparison of the cardiac effects between quinazoline-based alpha1-adrenoceptor antagonists on occlusion-reperfusion injury. J Biomed Sci 15, 239-249. Leist, M., Single, B., Castoldi, A.F., Kuhnle, S., Nicotera, P., 1997. Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J Exp Med 185, 1481-1486. Li, C., Jackson, R.M., 2002. Reactive species mechanisms of cellular hypoxia-reoxygenation injury. Am J Physiol Cell Physiol 282, C227-241. Ma, X.L., Weyrich, A.S., Lefer, D.J., Lefer, A.M., 1993. Diminished basal nitric oxide release after myocardial ischemia and reperfusion promotes neutrophil adherence to coronary endothelium. Circ Res 72, 403-412. Manning, A.S., Hearse, D.J., 1984. Reperfusion-induced arrhythmias: mechanisms and prevention. J Mol Cell Cardiol 16, 497-518. Marban, E., 2002. Cardiac channelopathies. Nature 415, 213-218. Maroko, P.R., Kjekshus, J.K., Sobel, B.E., Watanabe, T., Covell, J.W., Ross, J., Jr., Braunwald, E., 1971. Factors influencing infarct size following experimental coronary artery occlusions. Circulation 43, 67-82. McGarry, S.J., Williams, A.J., 1993. Digoxin activates sarcoplasmic reticulum Ca(2+)-release channels: a possible role in cardiac inotropy. Br J Pharmacol 108, 1043-1050. McGuire, M.A., Janse, M.J., 1995. New insights on anatomical location of components of the reentrant circuit and ablation therapy for atrioventricular junctional reentrant tachycardia. Curr Opin Cardiol 10, 3-8. Medkour, D., Becker, A.E., Khalife, K., Billette, J., 1998. Anatomic and functional characteristics of a slow posterior AV nodal pathway: role in dual-pathway physiology and reentry. Circulation 98, 164-174. Mengi, S.A., Dhalla, N.S., 2004. Carnitine palmitoyltransferase-I, a new target for the treatment of heart failure: perspectives on a shift in myocardial metabolism as a therapeutic intervention. Am J Cardiovasc Drugs 4, 201-209. Metra, M., Torp-Pedersen, C., Swedberg, K., Cleland, J.G., Di Lenarda, A., Komajda, M., Remme, W.J., Lutiger, B., Scherhag, A., Lukas, M.A., Charlesworth, A., Poole-Wilson, P.A., 2005. Influence of heart rate, blood pressure, and beta-blocker dose on outcome and the differences in outcome between carvedilol and metoprolol tartrate in patients with chronic heart failure: results from the COMET trial. Eur Heart J 26, 2259-2268. Micheletti, R., Mattera, G.G., Rocchetti, M., Schiavone, A., Loi, M.F., Zaza, A., Gagnol, R.J., De Munari, S., Melloni, P., Carminati, P., Bianchi, G., Ferrari, P., 2002. Pharmacological profile of the novel inotropic agent (E,Z)-3-((2-aminoethoxy) imino)androstane-6,17-dione hydrochloride (PST2744). J Pharmacol Exp Ther 303, 592-600. Miller, T.D., Christian, T.F., Hopfenspirger, M.R., Hodge, D.O., Gersh, B.J., Gibbons, R.J., 1995. Infarct size after acute myocardial infarction measured by quantitative tomographic 99mTc sestamibi imaging predicts subsequent mortality. Circulation 92, 334-341. Mitchell, G.F., Jeron, A., Koren, G., 1998. Measurement of heart rate and Q-T interval in the conscious mouse. Am J Physiol 274, H747-751. Moens, A.L., Claeys, M.J., Timmermans, J.P., Vrints, C.J., 2005. Myocardial ischemia/reperfusion-injury, a clinical view on a complex pathophysiological process. Int J Cardiol 100, 179-190. Nicotera, P., Melino, G., 2004. Regulation of the apoptosis-necrosis switch. Oncogene 23, 2757-2765. Olivetti, G., Abbi, R., Quaini, F., Kajstura, J., Cheng, W., Nitahara, J.A., Quaini, E., Di Loreto, C., Beltrami, C.A., Krajewski, S., Reed, J.C., Anversa, P., 1997. Apoptosis in the failing human heart. N Engl J Med 336, 1131-1141. Orrenius, S., Zhivotovsky, B., Nicotera, P., 2003. Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4, 552-565. Patten, R.D., Pourati, I., Aronovitz, M.J., Baur, J., Celestin, F., Chen, X., Michael, A., Haq, S., Nuedling, S., Grohe, C., Force, T., Mendelsohn, M.E., Karas, R.H., 2004. 17beta-estradiol reduces cardiomyocyte apoptosis in vivo and in vitro via activation of phospho-inositide-3 kinase/Akt signaling. Circ Res 95, 692-699. Pfeffer, M.A., Braunwald, E., 1990. Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation 81, 1161-1172. Poole-Wilson, P.A., Swedberg, K., Cleland, J.G., Di Lenarda, A., Hanrath, P., Komajda, M., Lubsen, J., Lutiger, B., Metra, M., Remme, W.J., Torp-Pedersen, C., Scherhag, A., Skene, A., 2003. Comparison of carvedilol and metoprolol on clinical outcomes in patients with chronic heart failure in the Carvedilol Or Metoprolol European Trial (COMET): randomised controlled trial. Lancet 362, 7-13. Priori, S.G., Napolitano, C., Schwartz, P.J., 1993. Cardiac receptor activation and arrhythmogenesis. Eur Heart J 14 Suppl E, 20-26. Rocchetti, M., Besana, A., Mostacciuolo, G., Ferrari, P., Micheletti, R., Zaza, A., 2003. Diverse toxicity associated with cardiac Na+/K+ pump inhibition: evaluation of electrophysiological mechanisms. J Pharmacol Exp Ther 305, 765-771. Rosamond, W., Flegal, K., Furie, K., Go, A., Greenlund, K., Haase, N., Hailpern, S.M., Ho, M., Howard, V., Kissela, B., Kittner, S., Lloyd-Jones, D., McDermott, M., Meigs, J., Moy, C., Nichol, G., O'Donnell, C., Roger, V., Sorlie, P., Steinberger, J., Thom, T., Wilson, M., Hong, Y., 2008. Heart disease and stroke statistics--2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 117, e25-146. Sagawa, T., Sagawa, K., Kelly, J.E., Tsushima, R.G., Wasserstrom, J.A., 2002. Activation of cardiac ryanodine receptors by cardiac glycosides. Am J Physiol Heart Circ Physiol 282, H1118-1126. Salvesen, G.S., Dixit, V.M., 1997. Caspases: intracellular signaling by proteolysis. Cell 91, 443-446. Scarabelli, T.M., Gottlieb, R.A., 2004. Functional and clinical repercussions of myocyte apoptosis in the multifaceted damage by ischemia/reperfusion injury: old and new concepts after 10 years of contributions. Cell Death Differ 11 Suppl 2, S144-152. Scarabelli, T.M., Knight, R.A., Rayment, N.B., Cooper, T.J., Stephanou, A., Brar, B.K., Lawrence, K.M., Santilli, G., Latchman, D.S., Baxter, G.F., Yellon, D.M., 1999. Quantitative assessment of cardiac myocyte apoptosis in tissue sections using the fluorescence-based tunel technique enhanced with counterstains. J Immunol Methods 228, 23-28. Schram, G., Pourrier, M., Melnyk, P., Nattel, S., 2002. Differential distribution of cardiac ion channel expression as a basis for regional specialization in electrical function. Circ Res 90, 939-950. Schwab, B.L., Guerini, D., Didszun, C., Bano, D., Ferrando-May, E., Fava, E., Tam, J., Xu, D., Xanthoudakis, S., Nicholson, D.W., Carafoli, E., Nicotera, P., 2002. Cleavage of plasma membrane calcium pumps by caspases: a link between apoptosis and necrosis. Cell Death Differ 9, 818-831. Shafaroudi, M.M., McBride, M., Deighan, C., Wokoma, A., Macmillan, J., Daly, C.J., McGrath, J.C., 2005. Two 'knockout' mouse models demonstrate that aortic vasodilatation is mediated via alpha2a-adrenoceptors located on the endothelium. J Pharmacol Exp Ther 314, 804-810. Shannon, R., Chaudhry, M., 2006. Effect of alpha1-adrenergic receptors in cardiac pathophysiology. Am Heart J 152, 842-850. Silverman, H.S., Stern, M.D., 1994. Ionic basis of ischaemic cardiac injury: insights from cellular studies. Cardiovasc Res 28, 581-597. Simpson, P.J., Lucchesi, B.R., 1987. Free radicals and myocardial ischemia and reperfusion injury. J Lab Clin Med 110, 13-30. Stewart, S., MacIntyre, K., Hole, D.J., Capewell, S., McMurray, J.J., 2001. More 'malignant' than cancer? Five-year survival following a first admission for heart failure. Eur J Heart Fail 3, 315-322. Sugiura, T., Nagahama, Y., Nakamura, S., Kudo, Y., Yamasaki, F., Iwasaka, T., 2003. Left ventricular free wall rupture after reperfusion therapy for acute myocardial infarction. Am J Cardiol 92, 282-284. Sung, R.J., Lauer, M.R., Chun, H., 1994. Atrioventricular node reentry: current concepts and new perspectives. Pacing Clin Electrophysiol 17, 1413-1430. The Digitalis Investigation Group, 1997. The effect of digoxin on mortality and morbidity in patients with heart failure. N Engl J Med 336, 525-533. Thornberry, N.A., Lazebnik, Y., 1998. Caspases: enemies within. Science 281, 1312-1316. Tsao, P.S., Aoki, N., Lefer, D.J., Johnson, G., 3rd, Lefer, A.M., 1990. Time course of endothelial dysfunction and myocardial injury during myocardial ischemia and reperfusion in the cat. Circulation 82, 1402-1412. Valente, R.C., Capella, L.S., Monteiro, R.Q., Rumjanek, V.M., Lopes, A.G., Capella, M.A., 2003. Mechanisms of ouabain toxicity. FASEB J 17, 1700-1702. Verma, S., Fedak, P.W., Weisel, R.D., Butany, J., Rao, V., Maitland, A., Li, R.K., Dhillon, B., Yau, T.M., 2002. Fundamentals of reperfusion injury for the clinical cardiologist. Circulation 105, 2332-2336. von Harsdorf, R., Li, P.F., Dietz, R., 1999. Signaling pathways in reactive oxygen species-induced cardiomyocyte apoptosis. Circulation 99, 2934-2941. von Harsdorf, R., Poole-Wilson, P.A., Dietz, R., 2004. Regenerative capacity of the myocardium: implications for treatment of heart failure. Lancet 363, 1306-1313. Wahed, M.I., Watanabe, K., Ma, M., Nakazawa, M., Takahashi, T., Hasegawa, G., Naito, M., Yamamoto, T., Kodama, M., Aizawa, Y., 2004. Effects of pranidipine, a novel calcium channel antagonist, on the progression of left ventricular dysfunction and remodeling in rats with heart failure. Pharmacology 72, 26-32. Wang, G., Liem, D.A., Vondriska, T.M., Honda, H.M., Korge, P., Pantaleon, D.M., Qiao, X., Wang, Y., Weiss, J.N., Ping, P., 2005. Nitric oxide donors protect murine myocardium against infarction via modulation of mitochondrial permeability transition. Am J Physiol Heart Circ Physiol 288, H1290-1295. Warltier, D.C., Zyvoloski, M.G., Gross, G.J., Hardman, H.F., Brooks, H.L., 1981. Determination of experimental myocardial infarct size. J Pharmacol Methods 6, 199-210. Weiss, J.N., Korge, P., Honda, H.M., Ping, P., 2003. Role of the mitochondrial permeability transition in myocardial disease. Circ Res 93, 292-301. Whalley, D.W., Wendt, D.J., Grant, A.O., 1995a. Basic concepts in cellular cardiac electrophysiology: Part I: Ion channels, membrane currents, and the action potential. Pacing Clin Electrophysiol 18, 1556-1574. Whalley, D.W., Wendt, D.J., Grant, A.O., 1995b. Basic concepts in cellular cardiac electrophysiology: Part II: Block of ion channels by antiarrhythmic drugs. Pacing Clin Electrophysiol 18, 1686-1704. Wilson, T.A., Foxall, T.L., Nicolosi, R.J., 2003. Doxazosin, an alpha-1 antagonist, prevents further progression of the advanced atherosclerotic lesion in hypercholesterolemic hamsters. Metabolism 52, 1240-1245. Wit, A.L., Cranefield, P.F., 1974. Effect of verapamil on the sinoatrial and atrioventricular nodes of the rabbit and the mechanism by which it arrests reentrant atrioventricular nodal tachycardia. Circ Res 35, 413-425. Woodcock, E.A., 2007. Roles of alpha1A- and alpha1B-adrenoceptors in heart: insights from studies of genetically modified mice. Clin Exp Pharmacol Physiol 34, 884-888. Zhao, Z.Q., 2004. Oxidative stress-elicited myocardial apoptosis during reperfusion. Curr Opin Pharmacol 4, 159-165. Zhao, Z.Q., Velez, D.A., Wang, N.P., Hewan-Lowe, K.O., Nakamura, M., Guyton, R.A., Vinten-Johansen, J., 2001. Progressively developed myocardial apoptotic cell death during late phase of reperfusion. Apoptosis 6, 279-290. Zhivotovsky, B., 2004. Apoptosis, necrosis and between. Cell Cycle 3, 64-66. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37948 | - |
dc.description.abstract | 高血壓是國人常見的心血管疾病之一,並常導致一些併發症如冠狀動脈心臟疾病、中風、心室肥大及心衰竭等。而在治療方面,有多種藥物用於治療高血壓,其中包括了甲一型腎上腺受體阻斷劑。
在心血管系統中,甲一型腎上腺受體不但參與正常心臟生理調控血管張力及血壓功能之調節,也在心肌肥大或衰竭及心律不整的病理機轉中扮演相關角色。甲一型腎上腺受體的阻斷劑包含 prazosin、doxazosin、bunazosin以及terazosin等,其廣泛用於降血壓及良性攝護腺肥大症之治療。然而近年來卻有許多臨床上的證據顯示使用doxazosin會增加心血管疾病的風險。其中最具信服力的就屬Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT)這一項臨床試驗,其設計目的為比較四種降血壓藥物對於高血壓病人造成致命性冠狀動脈心臟疾病及非致命性心肌梗塞的機率,結果發現長期使用doxazosin的病人得到這些心血管疾病尤其是鬱血性心衰竭的機率比使用cholorthalidone的病人要高出許多。此外,Vasodilator Heart Failure Trial(V-HeFT)這項臨床研究也發現,使用prazosin比使用其他血管放鬆劑的心衰竭病人具有較高的發病率與死亡率。 由於這些臨床的研究結果,引起了我們想要瞭解甲一型腎上腺受體拮抗劑在冠狀動脈心臟病上所扮演之角色。因此本論文第一部份欲探討甲一型腎上腺受體阻斷劑對於心臟冠狀動脈再灌流損傷的影響。我們在離體大鼠心臟利用Langendorff灌流方式比較四種甲一型腎上腺受體拮抗劑prazosin、 doxazosin、bunazosin、及 terazosin對於離體心臟缺血-再灌流損傷之影響。事先給予此四種甲一型腎上腺受體拮抗劑30分鐘後,將其左冠狀動脈結紮造成心肌局部缺氧30分鐘再鬆開重新恢復血流兩個小時,並測量心肌梗塞區域。結果發現prazosin及doxazosin在心臟重新恢復血流兩個小時後顯著增加了心肌梗塞區域、CK-MB及LDH,然而bunazosin則相反的減少了心肌梗塞區域及與細胞損傷相關之生化因子。另一方面,terazosin對此則無任何顯著影響。儘管此四種甲一型腎上腺受體拮抗劑對於缺血-再灌流的心肌梗塞區域有不同的影響,但對於TUNEL染色結果及caspase-3蛋白質表現量的影響卻有限。因此我們認為四種甲一型腎上腺受體拮抗劑對於缺血-再灌流後心肌梗塞區域之變化來自於其對心肌細胞壞死(necrosis)的影響,而非改變心肌細胞的自主凋亡(apoptosis)。 在第一部份的實驗中,我們意外發現在離體大鼠心臟利用Langendorff灌流方式,事先給予10μmicroM doxazosin後有將近一半的機率會引起心臟在心電圖上的PR時期的延長,造成類似房室結傳導障礙 (AV block) 之偶發性心律不整,進而完全抑制竇性自主節律。然而,在事先給予同樣濃度bunazosin、prazosin及terazosin之離體心臟則不會有相同情形。因此,為了釐清doxazosin造成心律不整的原因,在本論文第二部份中我們利用全細胞膜鉗定法(whole-cell patch clamp)的方式比較doxazosin及bunazosin兩者對於心肌細胞的電生理基本特性。結果顯示,doxazosin在濃度為10μM doxazosin後有將近一半的機率會引起心臟在心電圖上的PR時期的延長,造成類似房室結傳導障礙 (AV block) 之偶發性心律不整,進而完全抑制竇性自主節律。然而,在事先給予同樣濃度bunazosin、prazosin及terazosin之離體心臟則不會有相同情形。因此,為了釐清doxazosin造成心律不整的原因,在本論文第二部份中我們利用全細胞膜鉗定法(whole-cell patch clamp)的方式比較doxazosin及bunazosin兩者對於心肌細胞的電生理基本特性。結果顯示,doxazosin在濃度為10μM的時候會抑制心肌細胞的鈉電流(INa)、L型鈣電流(ICa,L)、瞬時外流鉀電流(Ito)及穩態鉀電流(Iss),但不改變內向整流鉀電流(IK1),而bunazosin對這些電流的影響則僅對L型鈣電流(ICa,L)有約百分之三十之抑制作用。此外,doxazosin也顯著地將鈉電流穩定狀態不活化曲線向左飄移,表示其降低了鈉離子通道的可用率。另一方面,doxazosin延長了單一心肌細胞的動作電位長度並且降低了動作電位強度及去極化速度,而bunazosin則沒有顯著影響動作電位。由以上研究我們推測,doxazosin所引起之心律不整最可能起因於其對房室節組織各部位之鈣離子電流抑制程度不均,進而引起房室節回路傳導。 綜合以上在缺血-再灌流離體心臟及單一心肌細胞電生理特性之結果顯示,長期使用doxazosin的病人比使用其他甲一型腎上腺受體拮抗劑的病人具有較高之心臟疾病風險。根據我們的研究,這四種甲一型腎上腺受體拮抗劑在同一濃度時對於冠狀動脈血流的作用類似,且對於缺血-再灌流之心肌梗塞區域的影響具有濃度相關性,因此我們認為在本實驗模式下,造成doxazosin與其他甲一型腎上腺受體拮抗劑作用不同的原因並非透過其對甲一型腎上腺受體作用之不同,而是另有作用點。然而其中詳細的作用機轉仍須之後更多的實驗證據進一步釐清。 本論文的第三部份則是針對高血壓之併發性心衰竭研發新型的治療藥物,利用各種實驗比較新型強心配糖體AT-11與ouabain之效用。結果證實AT-11無論在離體心臟肌肉或活體天竺鼠上的強心作用及安全性都比ouabain高,且AT-11對於心跳速率的影響也較大。然而,AT-11較高安全性之原因尚待更進一步的研究,其可能與AT-11對於副交感神經之活化及對交感神經之抑制有關。 | zh_TW |
dc.description.abstract | Hypertension is one of the most common cardiovascular diseases. It results in many complications such as coronary heart disease, stroke, hypertrophy, and heart failure. There are many classes of drugs used in the treatment of hypertension including alpha1-adrenoceptors antagonists.
In the cardiovascular system, alpha1-adrenoceptors play important roles not only in the normal physiological regulation of vascular tone and blood pressure, but also in the pathogenesis of cardiac hypertrophy, heart failure, and arrhythmias. Alpha1- adrenoceptors antagonists such as prazosin and its congeners including doxazosin, bunazosin, and terazosin are widely used as antihypertensive and anti-BPH agents. However, there are many clinical observations in recent years showing that using doxazosin may result in higher risk of cardiovascular accidents. The most convincing evidence is the large clinical study, Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT) which was designed to determine whether the incidence of the primary outcome differed among treatments with four types of antihypertensive drugs in hypertensive patients. The conclusion of ALLHAT is that compared with chlorthalidone, long-term use of doxazosin significantly increased the risk of combined cardiovascular disease events, especially congenital heart failure. Therefore, the findings in ALLHAT arouse our interests in the role of alpha1-adrenergic blockers on coronary artery disease. In the first part of this dissertation, we tried to determine the effects of alpha1-adrenoceptors blockers on occlusion-reperfusion injury. Langendorff-perfused rat hearts were pretreated with prazosin, doxazosin, bunazosin, and terazosin and then the left main coronary artery was occluded. After 30 min occlusion, the hearts were reperfusefd for 2 hrs. Two of the compounds studied, prazosin and doxazosin, apparently increased infarct size, CK-MB, and LDH activities after reperfusion. In contrast, bunazosin decreased and terazosin unchanged the infarct size. Although infarct sizes were differently affected by these four blockers, TUNEL-positive nuclei and caspase-3 protein expressions of all groups were not significantly different. Therefore, we supposed that the different effects of these four agents on infarct size came from the difference in necrosis rather than apoptosis. Simultaneously, we also found doxazosin prolonged PR interval and induced occasional arrhythmia followed by complete inhibition of sinus rhythm, whereas bunazosin, prazosin, and terazosin did not. Therefore, in the second part of this dissertation, we continued to compare the electrophysiological profiles between doxazosin and bunazosin. The results of voltage-clamp study showed that doxazosin inhibited INa, ICa,L, Ito, and Iss without changing IK1 but bunazosin only decreased ICa,L by 30% of basal value. Doxazosin also caused markedly negative shift of the INa inactivation curve which reduced INa availability. Besides, doxazosin prolonged action potential duration in association with the decreased action potential amplitude and upstroke velocity, whereas bunazosin did not. As the results shown, we hypothesize that doxazosin-induced arrhythmia may result from the heterogeneous or different level of ICa,L blockade of AV nodal tissue. In conclusion, this present study suggests that bunazosin is safer than doxazosin for long-term treatment in view of the effects on occlusion-reperfusion rat hearts and electrophysiological effect of single cardiomyocyte. According to our data, all four alpha1-adrenoceptor antagonists were found to have similar initial increase of coronary flow, and concentration-dependently affected the infarct size of the reperfused heart. Therefore, we suggest that the different effects between these four agents could be alpha1-adrenoceptor independent and not due to their different potency on the site of action. The precise underlying mechanisms are still needed to be further determined. In the third part of this dissertation, we compared the effects of cardiac glycoside ouabain with a novel agent AT-11. We found that both inotropic effect and safety of AT-11 were better than ouabain in isolated muscle strips and live guinea pigs. The heart rate reduction was more in AT-11. The reason why AT-11 have larger safety index remained to be further determined. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T15:52:49Z (GMT). No. of bitstreams: 1 ntu-97-F90443014-1.pdf: 2495594 bytes, checksum: 9b9209db50ffa9720e99f62d687f5b07 (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 縮寫表(Abbreviation) i
中文摘要(Abstract in Chinese) iii 英文摘要(Abstract in English) vii 第一章 緒論(Introduction) 1.1 研究動機與目的 1 1.2 文獻回顧 5 第二章 甲一型腎上腺受體阻斷劑對於缺血-再灌流傷害之作用比較 Comparison of the cardiac effects between quinazoline-based alpha1-adrenoceptor antagonists on occlusion-reperfusion injury 2.1 前言 20 2.2 實驗材料與方法 21 2.3 實驗結果 26 2.4 討論 29 第三章 Doxazosin與bunazosin之心臟電生理性質比較 Comparison of the cardiac electrophysiological effects between doxazosin and bunazosin 3.1 前言 41 3.2 實驗材料與方法 42 3.3 實驗結果 46 3.4 討論 51 第四章 新型強心配糖體藥物AT-11之藥理活性研究 Pharmacological profile of the new inotropic agent AT-11 4.1 前言 63 4.2 實驗材料與方法 64 4.3 實驗結果 67 4.4 討論 71 第五章 結論與展望(Conclusion and Perspective) 83 參考文獻(References) 86 著作(Publication List) 104 | |
dc.language.iso | zh-TW | |
dc.title | 甲一型腎上腺受體阻斷劑與新型強心配糖體對心臟之作用 | zh_TW |
dc.title | Effect of alpha1-adrenoceptor antagonists and a new cardiac glycoside on heart | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 顏茂雄(Mao-Hsiung Yen),林正一(Cheng-I Lin),吳美環(Mei-Hwan Wu),賴凌平(Ling-Ping Lai) | |
dc.subject.keyword | 甲一型腎上腺受體拮抗劑,Langendorff灌流心臟,心律不整,缺血-再灌流損傷,細胞凋亡,細胞壞死,心臟電生理,強心配糖體,鈉/鉀腺苷,三磷酸酶, | zh_TW |
dc.subject.keyword | alpha1-adrenoceptor antagonists,Langendorff-perfused heart,arrhythmia,ischemia-reperfusion injury,apoptosis,necrosis,electrophysiology,cardiac glycoside,Na+/K+ ATPase, | en |
dc.relation.page | 105 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-06-24 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 藥理學研究所 | zh_TW |
顯示於系所單位: | 藥理學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 2.44 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。