請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37943
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 戴子安(C.-A. Dai) | |
dc.contributor.author | Ang-Jhih Lu | en |
dc.contributor.author | 盧昂志 | zh_TW |
dc.date.accessioned | 2021-06-13T15:52:31Z | - |
dc.date.available | 2012-07-02 | |
dc.date.copyright | 2008-07-02 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-06-24 | |
dc.identifier.citation | Reference
1. MacDiarmid, A. G. Angewandte Chemie-International Edition 2001, 40, (14), 2581-2590. 2. Shirakawa, H.; Louis, E. J.; Macdiarmid, A. G.; Chiang, C. K.; Heeger, A. J. Journal of the Chemical Society-Chemical Communications 1977, (16), 578-580. 3. Shirakawa, H. Angewandte Chemie-International Edition 2001, 40, (14), 2575-2580. 4. Heeger, A. J. Angewandte Chemie-International Edition 2001, 40, (14), 2591-2611. 5. Heeger, A. J.; Kivelson, S.; Schrieffer, J. R.; Su, W. P. Reviews of Modern Physics 1988, 60, (3), 781-850. 6. Boudreaux, D. S.; Chance, R. R.; Elsenbaumer, R. L.; Frommer, J. E.; Bredas, J. L.; Silbey, R. Physical Review B 1985, 31, (1), 652-655. 7. Bredas, J. L.; Chance, R. R.; Baughman, R. H.; Silbey, R. Journal of Chemical Physics 1982, 76, (7), 3673-3678. 8. Ajayaghosh, A. Chemical Society Reviews 2003, 32, (4), 181-191. 9. Zhou, Z. H.; Maruyama, T.; Kanbara, T.; Ikeda, T.; Ichimura, K.; Yamamoto, T.; Tokuda, K. Journal of the Chemical Society-Chemical Communications 1991, (17), 1210-1212. 10. Yamamoto, T.; Zhou, Z. H.; Kanbara, T.; Shimura, M.; Kizu, K.; Maruyama, T.; Nakamura, Y.; Fukuda, T.; Lee, B. L.; Ooba, N.; Tomaru, S.; Kurihara, T.; Kaino, T.; Kubota, K.; Sasaki, S. Journal of the American Chemical Society 1996, 118, (43), 10389-10399. 11. Lee, B. L.; Yamamoto, T. Macromolecules 1999, 32, (5), 1375-1382. 12. Kitamura, C.; Tanaka, S.; Yamashita, Y. Chemistry of Materials 1996, 8, (2), 570-578. 13. Ma, W. L.; Yang, C. Y.; Gong, X.; Lee, K.; Heeger, A. J. Advanced Functional Materials 2005, 15, (10), 1617-1622. 14. Li, G.; Shrotriya, V.; Huang, J. S.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y. Nature Materials 2005, 4, (11), 864-868. 15. Scharber, M. C.; Wuhlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A. J.; Brabec, C. L. Advanced Materials 2006, 18, (6), 789-+. 16. Koster, L. J. A.; Mihailetchi, V. D.; Blom, P. W. M. Applied Physics Letters 2006, 88, (9). 17. Hoegl, H. Angewandte Chemie-International Edition 1965, 4, (2), 164-&. 18. Hoegl, H.; Barchiet.G; Tar, D. Photochemistry and Photobiology 1972, 16, (4), 335-&. 19. Grazulevicius, J. V.; Strohriegl, P.; Pielichowski, J.; Pielichowski, K. Progress in Polymer Science 2003, 28, (9), 1297-1353. 20. Williams, D. J.; Froix, M.; Goedde, A. O. Bulletin of the American Physical Society 1975, 20, (3), 473-473. 21. Chiellini, E.; Solaro, R.; Galli, G.; Ledwith, A. Advances in Polymer Science 1984, 62, 143-169. 22. Chiellini, E.; Solaro, R.; Ledwith, A. Makromolekulare Chemie-Macromolecular Chemistry and Physics 1978, 179, (8), 1929-1937. 23. Kim, H. S.; Kim, C. H.; Ha, C. S.; Lee, J. K. Synthetic Metals 2001, 117, (1-3), 289-291. 24. Wang, G. M.; Qian, S. X.; Xu, J. H.; Wang, W. J.; Liu, X.; Lu, X. Z.; Li, F. M. Physica B 2000, 279, (1-3), 116-119. 25. Stille, J. K. Angewandte Chemie-International Edition in English 1986, 25, (6), 508-523. 26. Farina, V.; Krishnan, B. Journal of the American Chemical Society 1991, 113, (25), 9585-9595. 27. 趙君傑. 民國96年. 28. 林怡菁. 民國95年. 29. Huang, J.; Niu, Y. H.; Yang, W.; Mo, Y. Q.; Yuan, M.; Cao, Y. Macromolecules 2002, 35, (16), 6080-6082. 30. Chen, S. Y.; Xu, X. J.; Liu, Y. Q.; Qiu, W. F.; Yu, G.; Wang, H. P.; Zhu, D. B. Journal of Physical Chemistry C 2007, 111, (2), 1029-1034. 31. Hou, J. H.; Tan, Z. A.; Yan, Y.; He, Y. J.; Yang, C. H.; Li, Y. F. Journal of the American Chemical Society 2006, 128, (14), 4911-4916. 32. Kanbara, T.; Miyazaki, Y.; Yamamoto, T. Journal of Polymer Science Part a-Polymer Chemistry 1995, 33, (6), 999-1003. 33. Lao, W. Y., J.; Yu, Z.; Qu, Q. HuaXue ShiJi 2000, 22, 260. 34. Li, Z. A.; Li, Z.; Di, C. A.; Zhu, Z. C.; Li, Q. Q.; Zeng, Q.; Zhang, K.; Liu, Y. Q.; Ye, C.; Qin, J. G. Macromolecules 2006, 39, (20), 6951-6961. 35. Bird, C. W.; Cheeseman, G. W.; Sarsfiel.Aa. Journal of the Chemical Society 1963, (Oct), 4767-&. 36. Apperloo, J. J.; Janssen, R. A. J.; Malenfant, P. R. L.; Frechet, J. M. J. Macromolecules 2000, 33, (19), 7038-7043. 37. Yamamoto, T.; Komarudin, D.; Arai, M.; Lee, B. L.; Suganuma, H.; Asakawa, N.; Inoue, Y.; Kubota, K.; Sasaki, S.; Fukuda, T.; Matsuda, H. Journal of the American Chemical Society 1998, 120, (9), 2047-2058. 38. Yamamoto, T.; Sanechika, K.; Yamamoto, A. Bulletin of the Chemical Society of Japan 1983, 56, (5), 1503-1507. 39. Kanbara, T.; Yamamoto, T. Macromolecules 1993, 26, (13), 3464-3466. 40. Yamamoto, T.; Lee, B. L. Macromolecules 2002, 35, (8), 2993-2999. 41. Yamamoto, T.; Lee, B. L.; Kokubo, H.; Kishida, H.; Hirota, K.; Wakabayashi, T.; Okamoto, H. Macromolecular Rapid Communications 2003, 24, (7), 440-443. 42. Reyes-Reyes, M.; Kim, K.; Carroll, D. L. Applied Physics Letters 2005, 87, (8). 43. Yu, G.; Heeger, A. J. Journal of Applied Physics 1995, 78, (7), 4510-4515. 44. van Mullekom, H. A. M. Ph.D. Thesis; Technishe Universiteit Eindhoven 2000. 45. Naarmann, H.; Strohriegl, P., Marcel Dekker: 1992. 46. Dhanabalan, A.; van Duren, J. K. J.; van Hal, P. A.; van Dongen, J. L. J.; Janssen, R. A. J. Advanced Functional Materials 2001, 11, (4), 255-262. 47. Brabec, C. J.; Winder, C.; Sariciftci, N. S.; Hummelen, J. C.; Dhanabalan, A.; van Hal, P. A.; Janssen, R. A. J. Advanced Functional Materials 2002, 12, (10), 709-712. 48. Svensson, M.; Zhang, F. L.; Veenstra, S. C.; Verhees, W. J. H.; Hummelen, J. C.; Kroon, J. M.; Inganas, O.; Andersson, M. R. Advanced Materials 2003, 15, (12), 988-+. 49. Wang, X. J.; Perzon, E.; Delgado, J. L.; de la Cruz, P.; Zhang, F. L.; Langa, F.; Andersson, M.; Inganas, O. Applied Physics Letters 2004, 85, (21), 5081-5083. 50. Inganas, O.; Svensson, M.; Zhang, F.; Gadisa, A.; Persson, N. K.; Wang, X.; Andersson, M. R. Applied Physics a-Materials Science & Processing 2004, 79, (1), 31-35. 51. Wang, X. J.; Perzon, E.; Oswald, F.; Langa, F.; Admassie, S.; Andersson, M. R.; Inganas, O. Advanced Functional Materials 2005, 15, (10), 1665-1670. 52. Zhang, F. L.; Perzon, E.; Wang, X. J.; Mammo, W.; Andersson, M. R.; Inganas, O. Advanced Functional Materials 2005, 15, (5), 745-750. 53. Bundgaard, E.; Krebs, F. C. Polymer Bulletin 2005, 55, (3), 157-164. 54. Xia, Y. J.; Luo, J.; Deng, X. Y.; Li, X. Z.; Li, D. Y.; Zhu, X. H.; Yang, W.; Cao, Y. Macromolecular Chemistry and Physics 2006, 207, (5), 511-520. 55. Zhang, F. L.; Mammo, W.; Andersson, L. M.; Admassie, S.; Andersson, M. R.; Inganas, L.; Admassie, S.; Andersson, M. R.; Ingands, O. Advanced Materials 2006, 18, (16), 2169-+. 56. Ashraf, R. S.; Hoppe, H.; Shahid, M.; Gobsch, G.; Sensfuss, S.; Klemm, E. Journal of Polymer Science Part a-Polymer Chemistry 2006, 44, (24), 6952-6961. 57. Leclerc, N.; Michaud, A.; Sirois, K.; Morin, J. F.; Leclerc, M. Advanced Functional Materials 2006, 16, (13), 1694-1704. 58. Wang, X. J.; Perzon, E.; Mammo, W.; Oswald, F.; Admassie, S.; Persson, N. K.; Langa, F.; Andersson, M. R.; Inganas, O. Thin Solid Films 2006, 511, 576-580. 59. Shi, C. J.; Yao, Y.; Yang, Y.; Pei, Q. B. Journal of the American Chemical Society 2006, 128, (27), 8980-8986. 60. Zhang, F. L.; Jespersen, K. G.; Bjorstrom, C.; Svensson, M.; Andersson, M. R.; Sundstrom, V.; Magnusson, K.; Moons, E.; Yartsev, A.; Inganas, O. Advanced Functional Materials 2006, 16, (5), 667-674. 61. Shin, W. S.; Kim, S. C.; Lee, S. J.; Jeon, H. S.; Kim, M. K.; Naidu, B. V. K.; Jin, S. H.; Lee, J. K.; Lee, J. W.; Gal, Y. S. Journal of Polymer Science Part a-Polymer Chemistry 2007, 45, (8), 1394-1402. 62. Gadisa, A.; Mammo, W.; Andersson, L. M.; Admassie, S.; Zhang, F.; Andersson, M. R.; Inganas, O. Advanced Functional Materials 2007, 17, (18), 3836-3842. 63. Zhu, Z.; Waller, D.; Gaudiana, R.; Morana, M.; Muhlbacher, D.; Scharber, M.; Brabec, C. Macromolecules 2007, 40, (6), 1981-1986. 64. Blouin, N.; Michaud, A.; Leclerc, M. Advanced Materials 2007, 19, (17), 2295-+. 65. Slooff, L. H.; Veenstra, S. C.; Kroon, J. M.; Moet, D. J. D.; Sweelssen, J.; Koetse, M. M. Applied Physics Letters 2007, 90, (14), -. 66. Chang, Y. T.; Hsu, S. L.; Su, M. H.; Wei, K. H. Advanced Functional Materials 2007, 17, (16), 3326-3331. 67. Blouin, N.; Michaud, A.; Gendron, D.; Wakim, S.; Blair, E.; Neagu-Plesu, R.; Belletete, M.; Durocher, G.; Tao, Y.; Leclerc, M. Journal of the American Chemical Society 2008, 130, (2), 732-742. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37943 | - |
dc.description.abstract | 近幾年來利用導電高分子/奈米顆粒混成系統來製作太陽能電池受到工業界及學術機關的高度興趣。因為高分子太陽能電池擁有價格低廉,並且可利用捲式塗佈技術進行大面積加工,使得這項研究受到極大的重視。目前由P3HT/PCBM混成系統做成的太陽能電池元件效率為4%。為了使效率超越P3HT/PCBM混成的太陽能電池元件,一個擁有適當光學能隙的導電高分子是重要的材料性質。在本篇碩士論文中,利用Stille 連結聚合法來製備一個含良好電洞傳導性質咔唑為側鏈的高分子,其主鏈是由quinoxaline/thiophene交錯行成的導電高分子,並且我們發現這樣的高分子對於一般有機溶劑仍然保有優秀的溶解性質。在化學合成過程中我們利用NMR,FT-IR和GPC等儀器來判定單體及高分子PCPQT的化學結構。此次合成出的新型高分子PCPQT是由交錯的電子施體thiophene單元和電子受體quinoxaline單元聚合而成。由電子施體和電子受體所形成的交錯型導電高分子,因為在其主鏈會形成電荷傳導現象,所以會在光學性質上有著我們希望的良好的性質。PCPQT 高分子可以溶解在多種有機溶劑中,如四氫扶喃。另外我們也發現隨著分子量的增加,在紫外光-可見光吸收光譜中會有從530nm紅移到630nm的現象。在X射線衍射分析實驗中我們發現聚合度分佈大的PCPQT高分子沒有晶體規則性,而純化過後聚合度分佈較小的PCPQT會有(100)面的晶體規則結構。在循環伏安法的電化學測試中,可以發現此高分子擁有比P3HT更低的HOMO能階,大約是5.5eV。目前,經由台灣大學凝態科學研究中心王立義老師的指導下,由其實驗室劉虹葳同學利用PCPQT/PCBM混成系統製作而成的太陽能電池元件已經達到0.4%的電力轉換效率。初步的研究發現PCPQT有著約 的電洞傳導率。最顯著的特色是PCPQT/PCBM混成系統的太陽能電池元件擁有比P3HT/PCBM混成系統還要高的開路電壓約0.75V。 | zh_TW |
dc.description.abstract | Solar cells based on conducting polymer/nanoparticle hybrid system have recently attracted an ever increasing attention both in academics and industries due especially to their potential to be used in low cost, large area, and roll-to-roll production. To further enhance the power conversion efficiency of 4% achieved from solar cells made of regioregular poly(3-hexyl thiophene)/[6,6]-phenyl C61 butyric acid methyl ester (P3HT/PCBM), new conducting polymers with optimized band energy levels are demonstrated to be one of the key material properties. In this master thesis work, I synthesized a highly soluble quinoxaline/thiophene alternating conducting polymer with hole transport moiety of carbazole as side chain using Stille coupling polymerization method. Various analytical techniques including H-NMR, C13-NMR, FTIR and GPC confirmed a successful synthesis of the constituent monomers [2,5-bis (trimethylstannyl) thiophene and 3-(4-(5,8-dibromo-2-(4-(9-butyl-9H-carbazol-3-yl) phenyl)quinoxalin-3-yl) phenyl)-9 -butyl-9H-carbazole(7)] and the resulting alternating conducting polymer PCPQT. The new conducting polymer PCPQT consists of alternating electron-donating thiophene unit and electron-accepting quinoxaline unit and shows interesting optical properties because of the formation of a charge-transferred (CT) electronic structure along the polymer chain. The polymer is soluble in organic solvents such as tetrahydrofuran and showed an increase in UV-VIS peak from 530nm to 630nm with increasing molecular weight. Powder X-ray diffraction analysis confirms that polydispersed PCPQT exhibits no crystalline order while monodispersed PCPQT shows a crystalline order plane of (100). The CT copolymers are electrochemically active in both oxidation and reduction regions and the cyclic voltammetry measurements show that the HOMO level of the CT polymer is ~5.5eV which is significantly lower than that of P3HT. Preliminary measurements have revealed hole mobilities of about of the pure material and a power conversion efficiency (PCE) up to 0.4% based on the solar cell consisted of PCPQT/PCBM hybrid system under AM 1.5 simulated sun light (100mW/cm2). Notably, the solar cell device made from PCPQT/PCBM exhibits a higher (~0.75V) than that of the conventional P3HT/PCBM one due mainly to the lower HOMO level of PCPQT. Further improvements are anticipated through a rational design of new low band gap quinoxiline/thiophene CT type conducting polymers. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T15:52:31Z (GMT). No. of bitstreams: 1 ntu-97-R95549025-1.pdf: 1308337 bytes, checksum: bc655ff6d7561a8f43ec23f11e186935 (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | Contents
Abstract………………………………………………………………………...………..I 中文摘要………………………………………………………………...……………..III Contents…………………………………………………………………………….….IV Table Captions………………………………………………………………...………VI Figure Captions………………………………………………………………......…..VII Scheme Captions………………………………………………….…………..………..X Chapter 1 Introduction ………………………...………………...…………...……1 1-1 The origin of conjugated polymers………………………………………………1 1-2 Donor-acceptor systems……………………………………...…………………..2 1-3 Donor-acceptor alternating conjugated polymers for photon harvesting in bulk heterojunction solar cells………………………………………...…………..…..4 1-4 Carbazole-containing polymers………………………………………………….5 1-5 The Stille reaction………………………………………………………………..6 Chapter 2 Experimental Part………………………………………...…………….8 2-1 General materials and methods……………………………………...………….10 2-2 Monomer synthesis…………………………………………………...………...12 2-3 Polymer synthesis……………………………………………………………….18 Chapter 3 Results and discussion ………………………………………...………20 3-1 Synthesis and characterization of the polymers…………………………...….…20 3-2 Optical Properties………...………………………………………………...…..22 3-3 Electrochemical property…………………………………………………...…..23 3-4 X-ray Diffraction……………………………………………………….…..…...24 Chapter 4 Characteristics of Photovoltaic Devices…………………….....…..….26 4-1 Sandwich configuration of ITO/PEDOT:PSS/Active Layer/LiF/Al………....…26 4-2 Sandwich configuration of ITO/PEDOT:PSS/Active Layer/Ca/Al……….……27 4-3 Sandwich configuration of ITO/PEDOT:PSS/Active Layer/Al………..…....….28 Chapter 5 Conclusions………………………………………………………...…..31 Reference…………………………………………………………………………...….33 Appendix A NMR Spectra………………………………………………….……71 Table Captions Table 1-1. Chemical structures, properties and performance in various solar cell devices………………………………………………….…………… .….42 Table 3-1. GPC estimated molecular weights of the polymers in THF………………47 Table 3-2. Molar absorption coefficient of PCPQT and P3HT………………...…….48 Table 3-3. Optical characteristics for PCPQT, CPQ, and PThQx(diPh) in dilute THF solutions ( ) and in the solid state…………………………...49 Table 4-1. Device characteristics of ITO/PEDOT:PSS/active Layer/LiF/Al……...…...66 Table 4-2. Device characteristics assembled in ITO/PEDOT:PSS /active layer /Ca/Al……………………………………………………………………….66 Table 4-3. Device characteristics assembled in ITO/PEDOT:PSS/active layer/Al….....66 Table 4-4. Device characteristics assembled in ITO/PEDOT:PSS/active layer/Al….....66 Figure Captions Figure 1-1. Band energy structure of a conjugated polymer……………………..…..36 Figure 1-2. Molecular orbital interaction in donor (D) and acceptor (A) moieties leading to a D-A monomer with an unusually low HOMO-LUMO energy separation………………………………………………………..37 Figure 1-3. Band formation during polymerization of a π-conjugated polymer……..38 Figure 1-4. Contour plot showing calculated energy-conversion efficiency (contourlines and colors) versus bandgap and LUMO level of a donor polymer according to the model described above……………….………39 Figure 1-5. Schematic of carrier transport in carbazole………………………..….…40 Figure 3-1. GPC trace of as synthesized PCPQT. (a) RI detector (b) UV detector………………………………………………………….……….50 Figure 3-2. GPC trace of a fractionation purified PCPQT (PCPQT-pure). (a) RI detector and (b) UV detector……………………………………….…....51 Figure 3-3. Comparison of molecular weight and distribution between PCPQT-as synthesized and PCPQT-pure………………………………….…….…..52 Figure 3-4. TGA curves for PCPQT-pure, PPQT and CPQ monomer………..……...53 Figure 3-5. UV-VIS absorption spectra of PThQx(diPh), PCPQT-as synthesized and CPQ monomer in THF………………………………………..……..54 Figure 3-6. UV-VIS absorption spectra of PTHQx(diPh) film and PCPQT film on quartz plates cast from chloroform solution……………………….….....55 Figure 3-7. Comparison of UV-VIS absorption spectra of PCPQT film on quartz plates and PCPQT in THF…………………………………………....….56 Figure 3-8. Comparison of UV-VIS absorption spectra of PTHQx(diPh) film on quartz plates and PTHQx(diPh) in THF solution…………………….….57 Figure 3-9. UV absorption spectra of different molecule weight of PCPQT (in THF solution) prepared from Prep-GPC method………...…….………..58 Figure 3-10. Molar absorption coefficient curves for PCPQT and poly (3-hexyl thiophene) (P3HT) in THF…………………………………...……..….59 Figure 3-11. Cyclic voltammograms of PCPQT-pure………………………......……60 Figure 3-12. Energy-level diagram of PCPQT, PCBM, P3HT, PEDOT:PSS, ITO and Al electrode………………………………………….………………….61 Figure 3-13. Powder x-ray diffraction pattern of PPQT………………………….…..62 Figure 3-14. Powder X-ray diffraction patterns of (a) PCPQT-as synthesized and (b) PCPQT-pure…………………………………………………...………..63 Figure 3-15. Schematic representation of the proposed packing structure of PCPQT-pure in solid state……………………………………...………64 Figure 3-16. IR spectra of PCPQT-pure and CPQ monomer measured in the form of pressed KBr plates………………………………………….….....…….65 Figure 4-1. Current-voltage (J-V) characteristics of ITO/PEDOT:PSS/active Layer/LiF/Al. cells…………………………………..………………….67 Figure 4-2. Current-voltage (J-V) characteristics of the ITO/PEDOT:PSS/active layer/Al solar cells…………………………………...………...……….68 Figure 4-3. Dark current density –potential characteristic of a diode made of ITO/PEDOT:PSS/active layer/Al with different PCPQT/ PCBM ratios…………………………………………………………......……..69 Figure 4-4. IPCE vs wavelength for blends consisting of PCPQT-pure/PCBM (1:0.7, 25.4mg/ml in chlorobenzene at 1400rpm) and P3HTPCBM =1:0.8………………………………………………………...…………70 Scheme Captions Scheme 1-1. The reaction mechanism of Stille coupling……………...……….…….41 Scheme 2-1. Synthetic route of CPQ……………………………………………….….8 Scheme 2-2. Synthetic route of PCPQT……………………………………...………..9 | |
dc.language.iso | en | |
dc.title | 利用Stille連結聚合法合成含咔唑側鏈之低能隙電子施體/受體導電高分子及其特性研究與應用 | zh_TW |
dc.title | Synthesis, Characterization and Application of Low Band gap Donor-Acceptor Conducting Polymer Containing Side-Chain Carbazole via Stille Coupling Polymerization | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 梁文傑(M-k Leung) | |
dc.contributor.oralexamcommittee | 林唯芳(Wei-Fang Su),王立義(L. Y. Wang) | |
dc.subject.keyword | 卡唑,低能隙,Suzuki 連結聚合法,Stille 連結聚合法,電子施體-受體,導電高分子, | zh_TW |
dc.subject.keyword | low band gap,Suzuki coupling,Stille coupling,carbazole,Donor-acceptor,conducting polymer, | en |
dc.relation.page | 83 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-06-24 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
顯示於系所單位: | 高分子科學與工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 1.28 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。