Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 財務金融學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37938
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蘇永成
dc.contributor.authorLu-Hsuan Luen
dc.contributor.author盧又瑄zh_TW
dc.date.accessioned2021-06-13T15:52:13Z-
dc.date.available2010-07-07
dc.date.copyright2008-07-07
dc.date.issued2008
dc.date.submitted2008-06-24
dc.identifier.citation1. Admati, A. and P. Pfleiderer, 1988, “A Theory of Intraday Patterns: Volume and Price Variability,” Review of Financial Studies, 1, 3-40.
2. Barclay, M. and J. Warner, 1993, “Stealth Trading and Volatility,” Journal of Financial Economics, 34, 281-305.
3. Barclay, M. J., T. Hendershott and D. T. Mccormick, 2003, “Competition Among Trading Venues: Information and Trading on Electronic Communications Networks,” Journal of Finance 58, 2637-2666.
4. Brunnermeier, M.K., 2005,” Information Leakage and Market Efficiency,” The Review of Financial Studies 18, 419-157.
5. Campbell, J. Y., S. J. Grossman, and J. Wang, 1993, “Trading Volume and Serial Correlation in Stock Returns,” Quarterly Journal of Economics, 108, 905-939.
6. Chakravarty, S., 2001, “Stealth-trading: Which Traders’ Trades Move Stock Prices?” Journal of Financial Economics, 61, 289-307
7. Chan, Fong, 2000, “Trade Size, Order Imbalance, and Volatility-Volume
Relation” Journal of Financial Economics, 57, 247-273.
8. Chordia, T. and A. Subrahmanyam, 1998, “Order Imbalance and Individual Stock Returns,” the Scholarship Repository, University of California.
9. Chordia, T., R. Roll, and A. Subrahmanyam, 2004, “Order Imbalance, Liquidity,and Market Returns,” Journal of Financial Economics, 72, 486-518.
10. Chordia, T., R. Roll, and A. Subrahmanyam, 2002, “Order Imbalance, Liquidity, and Market Returns,” Journal of Financial Economics, 65, 111-130.
11. Engle, R. F., and V. K. NG, “Measuring and Testing the Impact of News on Volatility,” Journal of Finance, 48, 1749-1778
12. Foster, D. F. and S. Viswanathan, 1994, “Strategic Trading with Asymmetric Informed Traders and Long-Lived Information,” Journal of Financial and Quantitative Analysis, 29, 499-518.
13. Foster, D. F. and S. Viswanathan, 1996, “Strategic Trading When Agents Forecast the Forecasts of Others,” Journal of Finance, 51, 1437-1478.
14. Glosten, L. R., Jagannathan, R., and Runkle. D. E., 1993, “On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks,” Journal of Finance, 48, 1179-1801.
15. He, H., and J. Wang, 1995, “Differential Information and Dynamic Behavior of Trading Volume,” Review of Financial Studies, 8, 919-972.
16. Hentchel, and Ludger, 1995, “All in the family Nesting symmetric and asymmetric GARCH models,” Journal of Financial Economics, 39, 71-104.
17. Hong, H., and J. Wang, 2000, “Trading and Returns under Periodic Market Closures,” Journal of Finance, 55, 297-354.
18. Karpoff, J., 1987, “The Relation between Price Changes and Trading Volume: A Survey,” Journal of Financial and Quantitative Analysis, 22, 109-126.
19. Kyle, A., 1985, “Continuous Auctions and Insider Trading,” Econometrica, 53, 1315-1335.
20. Lamoureux, C., and W. Lastrapes, 1990, “Heteroskedasticity in Stock Return Data: Volume versus GARCH Effects,” Journal of Finance, 45, 221-229.
21. Lee, Y. T., Y.J. Liu, R. Roll and A. Subrahmanyam, 2003, “Order Imbalances and Market Efficiency: Evidence from the Taiwan Stock Exchange,” Journal of Financial and Quantitative Analysis, 2001
22. Lee, Charles M.C, and M. J. Ready, 1991, “Inferring Trade Direction from Intraday Data,” Journal of Finance, 733-746
23. Lin, C. M., 2003, “Information Asymmetry and Return-Volume Relation: A Time Varying Model based upon Order Imbalance and Individual Stock,” Graduate Institute of Finance of National Taiwan University.
24. Lin, J.C., 2004, “Price-Volume Relation: A Time Varying Model with Censored and Camouflage Effects,” Graduate Institute of Finance of National Taiwan
University.
25. Lo, A. and J. Wang, 2000, “Trading Volume: Definitions, Data Analysis, and Implications of Portfolio Theory,” Review of Financial Studies, 13, 257-300.
26. Richie, N., and J.Madura, 2005, “Impact of the QQQ on Liquidity, Pricing Efficiency, and Risk of the Underlying Stocks”
27. Schwert,G.W, 1999, “ Why Does Stock Market Volatility Change Over Time,”Journal of Finance, 44, 1115-1153.
28. Wang, J., 1993, “A Model of Intertemporal Asset Prices Under Asymmetric Information,” Review of Economic Studies, 60, 249-282.
29. Wang, J., 1994, “A Model of Competitive Stock Trading Volume,” Journal of Political Economy, 102, 127-168.
30. Wang F. A., 1998, “Strategic Trading, Asymmetric Information and Heterogeneous Prior Beliefs,” Journal of Financial Markets, 1,321-352.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37938-
dc.description.abstract本文主要在研究NASDAQ-100 指數(QQQQ)市場效率的收斂性,根據過去的研究發現,當市場上出現不對稱的資訊時,市場上的投資人會立刻在市場上採取對作的交易,而促使市場回歸於效率,研究發現,一般股票反應的時間大約是在五到十五分鐘內,因此本研究要探討的是ETF 市場是否能提升市場的效率性;而根據前人的研究,買賣單不對稱為個股交易是否隱含不對稱資訊的一個重要指標,又在美國市場中,NASDAQ-100 為交易量最大的指數之一,因此在本文中,我們利用NASDAQ-100作為研究標的,並利用日內的買賣單不對稱的資料來研究指數的效率性。
在本研究中,首先我們發現前期的買賣單不對稱對股票報酬有負的顯著相關;而在考慮當期的買賣單不對稱下,同期的買賣單不對稱產生正的顯著相關,前期的買賣單不對稱則產生負的顯著相關。接著,利用GARCH(1,1) 模型,不論是否有考慮波動性因子下,發現買賣單不對稱對報酬並沒有顯著的影響,直到在三秒鐘的時
候才發現顯著的效果,而三秒鐘並無法讓投資人做出適當的交易策略來獲利。
最後,我們加入股票報酬波動的不對稱性的影響(壞消息相對於好消息對股票報酬波動的影響較大),採用了不對稱的GARCH 模型(GJR-GARHM 及 NA-GARCH),實證發現,風險貼水為影響NASDAQ-100 指數股票報酬的主要因素,而買賣單不對稱及突發消息皆沒有對報酬產生顯著的影響;因此,可以說NASDAQ-100 的確存在有較一般股票效率的市場。
zh_TW
dc.description.abstractMany researches had found the relation between trading activities and return. We want to test how ETF respond to those trading indicators. Thus, we divide the intraday data into five, ten, and fifteen seconds to do the search. We want to find out the speed to convergence to market efficiency of Nasdaq-100.
First, we apply the multi-regression model to test the lagged one to five periods’order imbalance. We find the negative significant impact of lagged one OI on the return.
Then, we test the conditional model. The current OI shows the huge positive significant level but the lagged one OI is negative significant. The reason is due to overweighting”.
Second, we use GARCH (1, 1) model to test the relation between order imbalances and return. We cannot find any significant of OI until three seconds. After adding the
impact of volatility, the result is the same but the significant is slightly less than the previous model.
Finally, we apply the asymmetric GARCH models. Bad news has higher impact than good news on the volatility of return. We use the GJR-GARCHM and NA-GARCH to represent innovation rotated and shifted individually. In models, Beta shows significant effect but order imbalance and innovation do not show the significant.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:52:13Z (GMT). No. of bitstreams: 1
ntu-97-R95723037-1.pdf: 676389 bytes, checksum: 3100c2245ab97a5d93536533a2265e26 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontentsChapter 1 Introduction…………………………………………………………1
1.1 Motives and Purposes…………………………………………1
1.2 Framework…………………………………………………………4
Chapter 2 Literatures Review……………………………………5
2.1 Trader’s Behavior under Information Asymmetry………5
2.2 Price-Volume Relations and Market Efficiency…………9
2.3 Volatility Modeling with GARCH Effect…………………12
Chapter 3 Data……………………………………………………15
3.1 Data Source and Criteria…………………………………15
3.2 Data Statistics………………………………………………16
3.3 NASDAQ-100.........................................16
Chapter 4 Methodology……………………………………………20
4.1 Unconditional Lagged Return-Order Imbalance Relation.
…………………………………………………………………………20
4.2 Conditional Contemporaneous Return-Order Imbalance Relation………………………………………………………………21
4.3 Return -Order Imbalance Relation in a GARCH (1, 1) Model……………………………………………………………………21
4.4 Volatility-Order Imbalance Relation in a GARCH (1, 1) Model……………………………………………………………………24
4.5 Asymmetric GARCH Model………………………………………25
4.5.1 GJR-GARCHM Model……………………………………………25
4.5.2 NA-GARCH Model………………………………………………26
Chapter 5 Empirical Results………………………………………28
5.1 Unconditional Lagged Return-Order Imbalance Relation………………………………………………………………28
5.2 Conditional Contemporaneous Return-Order Imbalance Relation………………………………………………………………29
5.3 Return -Order Imbalance Relation in a GARCH (1, 1) Model……………………………………………………………………30
5.4 Volatility -Order Imbalance Relation in a GARCH (1, 1) Model……………………………………………………………………31
5.5 Asymmetric GARCH Models...…………………………………32
5.5.1 GJR-GARCHM Model……………………………………………32
5.5.2 NA-GARCH Model………………………………………………34
Chapter 6 Conclusions..…………………………………………36
References……………………………………………………………38
Figures and Tables ………………………………………………41
dc.language.isoen
dc.subject市場效率性zh_TW
dc.subject那斯達克100zh_TW
dc.subject買賣單不對稱zh_TW
dc.subjectmarket efficiencyen
dc.subjectQQQQen
dc.subjectNasdaq-100en
dc.subjectorder imbalanceen
dc.titleQQQQ市場效率收斂性zh_TW
dc.titleConvergence Speed to Market Efficiency of QQQQen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王耀輝,黃漢青
dc.subject.keyword市場效率性,那斯達克100,買賣單不對稱,zh_TW
dc.subject.keywordQQQQ,Nasdaq-100,order imbalance,market efficiency,en
dc.relation.page80
dc.rights.note有償授權
dc.date.accepted2008-06-25
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept財務金融學研究所zh_TW
顯示於系所單位:財務金融學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
660.54 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved