Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37937
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳明汝
dc.contributor.authorJu-Chieh Huangen
dc.contributor.author黃如婕zh_TW
dc.date.accessioned2021-06-13T15:52:10Z-
dc.date.available2011-07-09
dc.date.copyright2008-07-09
dc.date.issued2008
dc.date.submitted2008-06-24
dc.identifier.citation謝明國。2003。以Bacillus licheniformis THSC-1 進行雞毛與豬毛分解效果之研究。碩士論文。東海大學畜產學系。
王翰聰。2004。瘤胃細菌纖維及蛋白質分解酵素之生產與利用。博士論文。國立臺灣大學畜產學系。
莊榮輝、陳建興、陳翰民、張世宗、林士民和劉育志。2005。酵素化學實驗。國立臺灣大學。
郭怡孜。2006。應用最適化方法開發具隔熱性益生菌微膠囊。碩士論文。國立臺灣大學動物科學技術學系。
Agricultural Research Council (ARC). 1981. The nutrient requirement of pigs. Commonwealth Agricultural Bureaux.
Allpress, J. D., G. Mountain, and P. C. Gowland. 2002. Production, purification, and characterization of an extracellular keratinase from Lysobacter NCIMB 9497. Lett. Appl. Microbiol. 34: 337-342.
Anbu, P., S. C. B. Gopinath, A. Hilda, T. Lakshmipriya, and G. Annadurai. 2007. Optimization of extracellular keratinase production by poultry farm isolate Scopulariopsis brevicaulis. Bioresour. Technol. 98: 1298-1303.
Apodaca, G., and J. H. Mckerrow. 1989. Purification and characterization of a 27,000-Mr extracellular proteainase from Trichophyton rubrum. Infect. Immun. 57: 3072-3080.
Apple, J. K., C. B. Boger, D. C. Brown, C. V. Maxwell, K. G. Froesen, W. J. Roberts, and Z. B. Johnson. 2003. Effect of feather meal on live animal performance and carcass quality and composition of growing-finishing swine. J. Anim. Sci. 81: 172-181.
Baker, D. H., and Y. Han. 1994. Ideal amino acid profile for broiler chicks during the first three weeks posthatching. Poul. Sci. 73: 1441-1447.
Bernal, C., J. Cairó, and N. Coello. 2006. Purification and characterization of a novel exocellular keratinase from Kocuria rosea. Enzyme Microb. Tech. 38: 49-54.
Bertsch, A., and N. Coello. 2005. A biotechnological process for treatment and recycling poultry feathers as a feed ingredient. Bioresour. Technol. 96: 1703-1780.
Böckle, B., B. Galunsky, and R. Muller. 1995. Characterization of a keratinolytic serine proteinase from Streptomyces pactum DSM 40530. Appl. Environ. Microbiol. 61: 3705-3710.
Böckle, B. and R. Müller. 1997. Reduction of disulfide bonds by Streptomyces pactum during growth on chicken feathers. Appl. Environ. Microbiol. 63: 790-792.
Brouta, F., F. Descamps, T. Fett, B. Losson, C. Gerday, and B. Mignon. 2001. Purification and characterization of a 43.5 kDa keratinolytic metalloprotease from Microsporum canis. Med. Mycol. 39: 269–275.
Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.
Brandelli, A., and A. Riffel. 2005. Production of an extracellular keratinase from Chryseobacterium sp. growing on raw feathers. J. Biotechnol. 8: 35-42.
Bressolier, P., F. Letourneau, M. Urdaci, and B. Verneuil. 1999. Purification and characterization of a keratinolytic serine proteinase from Streptomyces albidoflavus. Appl. Environ. Microbiol. 65: 2570-2576.
Çalík, P., E. Bilir, G. Çalík, and T. H. Özdamar. 2002. Influence of pH conditions on metabolic regulations in serine alkaline protease production by Bacillus licheniformis. Enzyme Microb. Tech. 31: 685-697.
Cheng, T. C., V. E. Ramakrishnan, and I. S. Chan. 1999. Purification and characterization of a cobalt-activated carboxypeptidase from the hyperthermophilic archaeon Pyrococcus furiosus. Protein Sci. 8: 2474-2486.
Chen K. N., M. J. Chen, and C. W. Lin. 2006. Optimal combination of the encapsulating materials for probiotic microcapsules and its experimental verification (R1). J. Food Eng. 76: 313-320.
Chi, M. C., R. C. Lyu, L. L. Lin, and H. B. Huang. 2008. Characterization of Bacillus kaustophilus leucine aminopeptidase immobilized in Ca-alginate/k-carrageenan beads. Biochem. Eng. J. 39: 376-382.
Clerck, E. D., D. Gevers, K. D. Ridder, and P. D. Vos. 2004. Screening of bacterial contamination during gelatine production by means of denaturing gradient gel electrophoresis, focussed on Bacillus and related endospore-forming genera. J. Appl. Microbiol. 96: 1333-1341.
El-Refai, H. A., M. A. Abde-Naby, A. Gaballa, M. H. El-Araby, and A. F. Abdel-Fattah. 2005. Improvement of the newly isolated Bacillus pumilus FH9 keratinolytic activity. Process Biochem. 40: 2325-2332.
Evans, K. L., J. Crowder, and E. S. Miller. 2000. Subtilisins of Bacillus spp. Hydrolyze keratin allow growth on feathers. Can. J. Microbiol. 46:1004-1011.
Exterkate, F. A. E., and A. C. Alting. 1999. Role of calcium in activity and stability of the Lactococcus lactis cell envelope proteinase. Appl. Environ. Microbiol. 65: 1390-1396.
Farag, A. M., and M. A. Hassan. 2004. Purification, characterization and immobilization of a keratinase from Aspergillus oryzae. Enzyme Microb. Tech. 34: 85-93.
Friedrich, A. B., and G. Antranikian. 1996. Keratin degradation by Fervidobacterium pennavorans, a novel thermophilic anaerobia species of the order thermotogales. Appl. Environ. Microbiol. 62: 275-2882.
Fuller, M. F., R. McWilliam, T. C. Wang, and L. R. Giles. 1989. The optimum dietary amino acid pattern for growing pigs. 2. Requirements for maintenance and for tissue protein accretion. Br. J. Nutr. 62: 255.
George, S., V. Raju, M. R. V. Krishnen, T. V. Subramanian and K. Jayaraman. 1995. Production of protease by Bacillus amyloliquefaciens in solid-state fermentation and its application in the unhairing of hides and skins. Process Biochem. 30: 457-462.
Gessesse, A., R. H. Kaul, B. A. Gashe, and B. Mattiasson. 2003. Novel alkaline proteases from alkalophilic bacteria grown on chicken feather. Enzyme Microb. Tech. 32: 519-524.
Ghorbel-Frikha, B., A. Sellami, N. Fakhfakf, A. Haddae, L. Manni, and M. Nasri. 2005. Production and purification of a calcium-dependent protease from Bacillus cereus BG1. J. Ind. Microbiol. Biotechnol. 32: 186-194.
Giongo, J. L., F. S. Lucas, F. Casarin, P. Heeb, and A. Brandlli. 2007. Keratinolytic protease of Bacillus species isolated from Amazon basin showing remarkable de-hairing activity. World J. Microbiol. Biotechnol. 23: 375-382.
Gousterova, A., D. Braikova, I. Goshec, P. Christov, K. Tishinov, V. E. Tonkova, T. Haertle, and P. Nedkov. 2005. Degradation of keratin and collagen containing wastes by newly isolated thermoactinomycetes or by alkaline hydrolysis. Lett. Appl. Microbiol. 40:335-340.
Gradisar, H., S. Kern, and J. Frisdich. 2000. Keratinase of Doratomyces microsporus. Appl. Microbiol. Biotechnol. 53: 196-200.
Grazziotin, A., F. A. Pimentel, E. V. de Jong, and A. Bramdelli. 2006. Nutritional improvement of feather protein by treatment with microbial keratinase. Anim. Feed Sci. Technol. 126: 135-144.
Gupta, R., Q. K. Beg, and P. Lorenz. 2002. Bacterial alkaline protease: molecular approaches and industrial applications. Appl. Microbiol. Biotechnol. 59: 15-32.
Gupta, R., and P. Ramnani. 2006. Microbial keratinases and their prospective applications: An overview. Appl. Microbiol. Biotechnol. 70: 21-33.
Huang, Q., Y. Peng, X. Li, H. F. Wang, and Y. Z. Zhang. 2003. Purification and characterizatrion of an extracellular alkaline serine protease with dehairing function from Bacillus pumilus. Curr. Microbiol. 46: 169-173.
Joshi, S. G., M. M. Tejashwini, N. Revati, R. Sridevi, and D. Roma. 2007. Isolation, identification and characterization of a feather degrading bacterium. Int. J. Poul. Sci. 6: 689-693.
Jou, C. J. G., Y. S. Chen, H. P. Wang, K. S. Lin, and H. S. Tai. 1999. Hydrolytic dissociation of hog-hair by microwave radiation. Bioresour. Technol. 70: 111-113.
Kim, J. M., W. J. Lim, and H. J. Suh. 2001. Feather-degrading Bacillus species from poultry waste. Process Biochem. 37: 287-291.
Kim, S. S., Y. J. Kim, and I. K. Rhee. 2001. Purification and characterization of a novel extracellular protease from Bacillus cecreus KCTC 3674. Arch. Microbiol. 175 458-461.
Kim, W. K., and P. H. Patterson. 2000. Nutritional value of enzyme- or sodium hydroxide-treated feathers from dead hens. Poult. Sci. 79: 528-534.
Kumar, C. G., and H. Takagi. 1999. Microbial alkaline proteases: from a bioindustrial viewpoint. Biotechnol. Adv. 17: 561-594.
Kunert, J. 1989. Biochemical mechanism of keratin degradation by the actinomyces Streptomyces fradiae and the fungus Microsporum gypseum: a comparison. J. Basic Microbiol. 29: 597-604.
Langeveld, J. P. M., J. J. Wang, F. M. Van de W. Dick, G. C. Shih, G. J. Garssen, A. Bossers, and J. C. H. Shih. 2003. Enzymatic degradation of prion protein in brain stem from infected cattle and sheep. J. Infect. Dis. 188: 1782-1789.
Letourneau, F., V. Soussotte, P. Bressollier, P. Branland, and B. Vreneuil. 1998. Keratinolytic activity of Streptomyces sp. S.K1-02: a new isolated strain. Lett. Appl. Microbiol. 26: 77-80.
Li, J., P. J. Shi, X. Y. Han, K. Meng, P. L. Yang, Y. R. Wang, H. Y. Luo, N. F. Wu, B. Yao, and Y. L. Fan. 2007. Functional expression of the keratinolytic serine protease gene sfp2 from Streptomyces fradiae var. k11 in Pichia pastoris. Protein Expres. Purif. 54: 79-86.
Lin, X., C. G. Lee, E. S. Casale, and J. C. H. Shih. 1992. Purification and characterization of a keratinase from a feather-degrading Bacillus licheniformis strain. Appl. Environ. Microbiol. 58: 3271-3275.
Lin, X., D. W. Kelemen, E. S. Miller, and J. C. H. Shih. 1995. Nucleotide sequence and expression of kerA, the gene encoding a keratinolytic protease of Bacillus licheniformis PWD-1. Appl. Environ. Microbiol. 61: 1469-1474.
Lin, X., J. C. H. Shih, and H. E. Swaisgood. 1996. Hydrolysis of feather keratin by immobilized keratinase. Appl. Environ. Microbiol. 62: 4273-4275.
Lin, X., S-L. Wong, E. S. Miller, and J. C. H. Shih. 1997. Expression of the Bacillus licheniformis PWD-1 keratinase gene in B. subtilis. J. Ind. Microbiol. Biot. 19: 134-138.
Longshaw, C.M., J. D. Wright, A. M. Farrell, and K. T. Holland. 2002. Kytococcus sedentarius, the organism associated with pitted keratolysis, produces two keratin-degrading enzymes. J. Appl. Microbiol. 93: 810-816.
Macedo, A. J., W. O. B. da Silva, R. Gava, D. Driemeier, J. A. P. Henriques, and C. Termignoni. 2005. Novel keratinase from Bacillus subtilis S14 exhibiting remarkable dehairing capabilities. Appl. Environ. Microbiol. 71: 594-596.
Manczinger, L., M. Rozs, Cs. Vagvolgyi, and F. Kevei. 2003. Isolation and characterization of a new keratinolytic Bacillus licheniformis strain. World J. Microbiol. Biotechnol. 19: 35-39.
Mathison, G. E. 1964. The microbiological decomposition of keratin. Ann. Soc. Belges. Med. Trop. Parasitol. Mycol. 44: 767-791.
Mcdonald, P., R. A. Edwards, and J. F. D. Greenhalgh. 1973. Animal Nutrition. Second edition.
Mittal, A., S. Khurana, H. Singh, and R. C. Kamboj. 2005. Characterization of dipeptidylpeptidase IV (DPP IV) immobilized in Ca alginate beads. Enzyme Microb. Tech. 37: 318-323.
Moran, E. T. J. R., W. F. Pepper, and J. D. Summers. 1969. Processed feather and hog hair meals as sources of dietary protein for the laying hen with emphasis on their use in meeting maintenance needs. Poult. Sci. 48: 1245-1250.
Muyzer, G. 1999. DGGE/TGGE a method for identifying genes from natural ecosystems. Curr. Opin. Microbiol. 2: 317-322.
Nam, G. W., D. W. Lee, H. S. Lee, N. J. Lee, B. C. Kim, E. A. Choe, J. K. Hwang, M. T. Suhartono, and Y. R. Pyun. 2002. Native feather degradation by Fervidobacterium islandicum AW-1, a newly isolated keratinase-producing thermophilic anaerobe. Arch. Microbiol. 178: 538-547.
Nilegaonkar, S. S., V. P. Zambare, P. P. Kanekar, P. K. Dhakephalkar, and S. S. Sarnaik. 2007. Production and partial characterization of dehairing protease from Bacillus cereus MCM B-326. Bioresour. Technol. 98: 1238-1245.
Noval, J., and W. J. Nickerson. 1959. Decomposition of native keratin by Streptomyces fradiae. J. Bacteriol. 77: 251-263.
National Research Council (NRC). 1994. Nutriention requirement of poultry. (9th Ed.) Washington, DC: National Research Council.
Odetallah, N. H., J. J. Wang, J. D. Garlich, and J. C. H. Shih. 2003. Keratinase in start diets improves growth of broiler chicks. Poult. Sci. 82: 664-670.
Odetallah, N. H., J. J. Wang, J. D. Garlich, and J. C. H. Shih. 2005. Versazyme supplementation of broiler diets improves market growth performance. Poult. Sci. 84: 858-864.
Onifade, A. A., N. A. Al-Sane, A. A. Al-Musallam, and S. Al-Zarban, 1998. A review: potentials for biotechnological applications of keratin-degrading microorganisms and their enzymes for nutritional improvement of feathers and other keratins as livestock feed resources. Bioresour. Technol. 66: 1-11.
Porres, J. M., M. J. Benito, and X. G. Lei. 2002. Functional expression of keratinase (kerA)gene from Bacillus licheniformis in Pichia pastoris. Biotechnol. Lett. 24: 631-636.
Ramnani, P., and R. Gupta. 2004. Optimization of medium composition for keratinase production on feather Bacillus licheniformis RG1 using statistical methods involoving response surface methodology. Biotechnol. Appl. Biochem. 40: 191-196.
Ramnani, P., R. Singh, and R. Gupta. 2005. Keratinolytic potential of Bacillus licheniformis RG1: structural and biochemical mechanism of feather degradation. Can. J. Microbiol. 51: 191-196.
Rao, M. B., A. M. Tanksale, M. S. Ghatge, and V. V. Deshpande. 1998. Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. Rev. 62: 597-635.
Riffel, A., and A. Brandelli. 2002. Isolation and characterization of a feather-degrading bacterium from the poultry processing industry. J. Ind. Microbiol. Biot. 29: 255-258.
Riffel, A., F. Lucas, P. Heeb, and A. Brandelli. 2003a. Characterization of a new keratinolytic bacterium that completely degrades native feather keratin. Arch. Microbiol. 179: 258-265.
Riffel, A., S. Ortolan, and A. Brandelli. 2003b. De-hairing activity of extracellular proteases produced by keratinolytic bacteria. J. Chem. Technol. Biotechnol. 78: 855-859.
Riffel, A., A. Brandelli, C. de M. Bellato, G. H. M. F. Souza, M. N. Eberlin, and F. C.A. Tavares. 2007. Purification and characterization of a keratinolytic metalloprotease from Chryseobacterium sp. kr6. J. Biotechnol. 128: 693-703.
Rissen S., and G. Antranikian. 2001. Isolation of Thermoanaerobacter keratinophilus sp. nov., a novel thermophilic, anaerobic bacterium with keratinolytic activity. Extremophiles 5:399-408.
Sangali, S., and A. Brandelli. 2000. Feather keratin hydrolysis by a Vibrio sp. strain kr2. J. Appl. Microbiol. 89: 735-743.
Saravanabheava, S., R. Aravindhan, P. Thanikaivelan, J. R. Rao, and B. U. Nair. 2003. Green solution for tannery pollution: effect of enzyme based lime-free unhairing and fibre opening in combination with pickle-free chrome tanning. Green chem. 5: 707-714.
Sinha, U., S. A. Wolz, and J. L. Pushkaraj. 1991. Two new extracellular serine proteinase from Streptomyces fradiae. Int. J. Biochem. 23: 979-984.
Sumantha, A., C. Larroche, and A. Pandey. 2006. Microbiology and industrial biotechnology of food-grade protease: a perspective. Food Technol. Biotechnol. 44: 211-220.
Suntornsuk, W., J. Tongjun, P. Onnim, H. Oyama, K. Ratanakanokchai, T. Kusamran, and K. Oda. 2005. Purification and characterization of keratinase from a thermotolerant feather-degrading bacterium. World J. Microbiol. Biotechnol. 21:1111-1117.
Takami, H., F. Nakamura, R. Aono, and K. Horikoshi. 1992. Degradation of human hair by a thermostable alkaline proteinase from alkalophilic Bacillus sp. no. AH101. Biosci. Biotechnol. Biochem. 56: 1667-1669.
Takami, H., Y. Nogi, and K. Horikoshi. 1999. Reidentification of keratinase-producing facultatively alkaliphilic Bacillus sp. AH-101 as Bacillus halodurans. Extremophiles 3: 293-296.
Taylor, D. M. 2000. Inactivation of transmissible degenerative encephalopathy agents: a review. Vet. J. 159: 10-17.
Thanikaivelan, P., J. R. Rao, B. U. Nair, and T. Ramasami. 2004. Progress and recent trends in biotechnology methods for leather processing. Trends Biotechnol. 22: 181-188.
Thys, R. C. S., F. S. Lucas, A. Riffel, P. Heeb, and A. Brandelli. 2004. Characterization of a protease of a feather-degrading Microbacterium species. Lett. Appl. Microbiol. 39: 181-186.
Venter, H., G. Osthoff, and D. Litthauer. 1999. Purification and characterization of a metalloprotease from Chyseobacterium indologenes Ix9a and determination of the amino acid specificity with electrospray mass spectrometry. Protein Expres. Purif. 15: 282-295.
Wang, J. J., and J. C. H. Shih. 1999. Fermentation production of keratinase from Bacillus licheniformis PWD-1 and a recombinant Bacillus subtilius FDB-29. J. Ind. Microbiol. Biot. 22: 608-616.
Wang, J. J., H. E. Swaisgood, and J. C. H. Shih. 2003. Bioimmobilization of keratinase using Bacillus subtilis and Escherichia coli systems. Biotechnol. Bioeng. 81: 421-429.
Wang, J. J., R. Kawan, and J. C. H. Shih. 2004. Increased production of Bacillus keratinase by chromosomal integration of multiple copis of the kerA gene. Biotechnol. Bioeng. 87: 459-464.
Wang, X., and C. M. Parsons. 1997. Effect of processing systems on protein quality of feather meals and hog hair meals. Poul. Sci. 76: 491-496.
Williams, C. M., C. S. Richter, J. M. Mackenzie, JR., and J. C. H. Shin. 1990. Isolation, identification, and characterization of a feather-degrading bacterium. Appl. Environ. Microbiol. 56: 1509-1515.
Yamamura, S., Y. Morita, Q. Hasan, S. R. Rao, Y. Murakami, K. Yokoyama, and E. Tamiya. 2002a. Characterization of a new keratin-degrading bacterium isolated from deer fur. J. Biosci. Bioeng. 93:595–600.
Yamamura, S., Y. Morita, Q. Hasan, K. Yokoyama, and E. Tamiya. 2002b. Keratin degradation: a cooperative action of two enzymes from Stenotrophomonas sp. Biochem. Bioph. Res. Co. 294: 1138-1143.
Zambare, V. P., S. S. Nilegaonkar, and P. P. Kanekar. 2007. Production of an alkaline protease by Bacillus cereus MCM B-326 and its application as a dehairing agent. World J. Microbiol. Biotechnol. 23: 1569-1574.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37937-
dc.description.abstract本研究冀由豬毛上篩選一株具高角蛋白及蛋白水解能力的菌株,確認菌株生產酵素的最佳活性表現條件及其基本特性,應用於水解台灣大宗的事業廢棄物 - 豬毛,以取代目前的焚燒處理造成環境污染及能源耗費,同時探討其用於飼料添加之營養價值。研究中先篩選出 32 株具豬毛水解能力之菌株,以呈色法測定各菌株水解偶氮基酪蛋白 (azocasein) 及偶氮基角蛋白 (azokeratin) 之能力,藉統計分析決定試驗菌株後,利用變性梯度膠體電泳法 (denaturing gradient gel electrophoresis, DGGE) 及定序確認菌株身分為 Bacillus cereus H10。
由菌數、pH 值、蛋白分解酶比活性、角蛋白分解酶比活性及可溶性蛋白量決定菌株酵素表現最佳天數為培養第三日,接著利用離子交換樹脂管柱及快速蛋白質液相層析系統純化得到一種蛋白酶及角蛋白酶,分子量分別約為 102.3 及 44.8 kDa。針對溫度及 pH 值兩項因子對酵素活性表現的探討中可發現,角蛋白酶在 50∼90 °C 及 pH 5.0 的條件下表現良好活性,然而,蛋白酶則在 50 °C 及 pH 6.0~8.0 有最佳的活性表現,為了使蛋白酶及角蛋白酶同時有最佳的活性表現,利用反應曲面法 (response surface methodology, RSM) 及序列二次規劃法 (sequential quadratic programming, SQP) 尋求最佳酵素活性表現,為 pH  7.57及59 °C 時可得到最高的蛋白酶活性及角蛋白酶活性。在生化特性分析部分,利用蛋白質抑制劑確認該菌株生產蛋白酶及角蛋白酶皆屬於金屬型蛋白酶 (metalloprotease)。在變性劑、有機溶劑及還原劑中皆可維持穩定活性。添加二硫蘇糖醇 (DTT) 和巰基乙醇 (β-mercaptoethanol) 後蛋白分解活性皆降低,而角蛋白分解活性,在 β-mercaptoethanol 的處理後有些微的增加;但 DTT 的添加則降低其活性表現。Ca2+ 和Zn2+ 的添加,皆使蛋白和角蛋白分解活性降低,而添加 Fe3+ 則提升角蛋白酶的活性表現。耐熱性測試中,蛋白分解活性在 59、70 或 80 °C 作用 120 分鐘,仍維持 30~40% 活性,而角蛋白分解活性在三種溫度作用 120 分鐘皆可維持 95% 活性。
就 B. cereus H10 角蛋白酶之應用面進行探討,由褐藻酸鈉及氯化鈣膠囊化之酵素,蛋白分解活性在 59 °C 下有提高,70 °C 無明顯改變,80 °C 作用 120 分鐘則有降低的情況;角蛋白分解活性在三種溫度無差異。將膠囊化酵素重複試驗六次後,蛋白分解活性仍可維持 40~60%,而角蛋白分解活性則可維持 80%。若同時比較不同來源之蛋白質水解時,以豬毛粉水解效果最佳 (70%),與大豆粕水解情形相似,豬毛及羽毛粉較差 (30%)。與 Proteinase K 相比,B. cereus H10 生產酵素的水解效果亦高出約兩倍左右。分析其水解產物之胺基酸組成量,B. cereus H10 酵素處理組皆顯著高於未添加酵素處理組。若利用必需胺基酸計算其化學積分,以酪胺酸和苯基丙胺酸為第一限制胺基酸,離胺酸是第二限制胺基酸,異白胺酸是第三限制胺基酸。當考量豬隻及家禽之理想蛋白質組成,幾乎所有必需胺基酸皆可符合需求,因此,未來若要供飼料應用,可搭配較高量離胺酸的飼料以符合動物生長所需。
zh_TW
dc.description.abstractKeratin, which is increasingly accumulating in the environment mainly in the form of feathers and hair, becomes a part of solid waste management. However, keratin is difficult to degrade due to its highly rigid structure rendered by extensive disulfide bonds and cross-linkages. There is a demand for developing alternatives for recycling of such wastes. Thus, the purpose of this study was to purify and characterize a keratinase secreted by a high keratinolytic bacterium isolated from hog hair. In addition, the potential for utilization of the hydrolyzates of hog hair and hog hair meal as ingredients in animal feed was also evaluated.
Isolation results indicated that a bacterium designated H10 from hog hair showed high keratinolytic and proteolytic activities. Further identified by PCR-DGGE and 16S rRNA sequencing, H10 was placed in a cluster with Bacillus cereus. The unique of this strain is comprised two types of extra-cellular proteins: proteolytic and keratinolytic. After purification of these enzymes secreted by B. cereus H10 using ion exchange chromatography, the specific activity of the finally purified enzyme for proteolysis and keratinolysis was 29080 and 6391.25 U/mg, respectively. The molecular mass of keratinase and protease were 45.4 kDa and 102.3 kDa, respectively. The enzyme sample possessed two proteases which displayed a very different active temperature and pH range for proteolysis and keratinolysis. Response surface methodology (RSM) combining with sequential quadratic programming (SQP) helps in evaluating the effect factors and in building models. Thus, RSM with SQP was used in the following work to develop a prediction model for the optimal pH and temperature for the enzyme sample from B. cereus H10. Optimization results indicated that the optimal pH and temperature were at pH 7.57 and 59 °C. The results on the biochemical properties showed that both proteases belonged to the metalloproteases and were stable toward solvents, detergents and reduced agents. Among the metal ions, calcium and zinc ion showed an inhibition for enzyme activities, but the keratinase was activated by ferric ion. On the keratinolytic activity, the enzyme displayed stability at 59, 70 and 80 °C, with more than 95% of its initial activity up to 2hr, whereas, the proteolytic activity only remained 30~40% activity.
Evaluating the possible applications of this enzyme, immobilized enzymes could stand higher temperature than free enzymes on both activities. After 6 times usages, the immobilized enzymes displayed stability with more than 80% of its initial activity, whereas, the proteolytic activity also remained 40~60% activity. Testing the protease activity on various protein substrates indicated this enzyme sample could easily hydrolyze hog hair meal which showed no significant difference with hydrolyzing soy bean meal. However, it displayed a relatively low digestibility for feather meal and hog hair. Further comparison with proteinase K, the hydrolyzation of hog hair by B. cereus H10 enzyme was 2-fold higher than that of proteinase K. Nutrition improvement test proved that hydrolyzates of hog hair and hog hair meal might have potential for utilization as ingredients in animal feed.
In conclusion, this enzyme sample is very effective in hog hair degradation and shows the high thermal stability, presenting potential use for biotechnological processes involving keratin hydrolysis. To the best of our knowledge, this is the first report on isolation and purification of keratinase and protease from hog hair and cooperation of these two enzymes resulting in the effective degradation of keratin.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:52:10Z (GMT). No. of bitstreams: 1
ntu-97-R95626007-1.pdf: 1506472 bytes, checksum: 29f0b248f04c6847685570710a6b5644 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents目 錄
口試委員會審定書
誌謝
目 錄 I
表 目 錄 IV
圖 目 錄 VI
中 文 摘 要 i
英 文 摘 要 iii
緒 言 vi
第一章 文 獻 檢 討 1
一、畜牧廢棄物處理問題 1
二、角蛋白酶產生菌株 3
(一) 微生物生長階段 4
(二) pH 值及溫度 5
(三) 添加物 6
(四) 發酵方式 8
三、微生物角蛋白酶之特性 9
(一) pH 值及溫度 10
(二) 分子量 10
(三) 可作用物質 11
(四) 抑制劑、金屬離子、溶劑、非離子型變性劑和還原劑的影響 11
四、 微生物角蛋白酶之作用機制 12
五、微生物角蛋白酶之生產 13
(一) 微生物發酵 14
(二) 基因工程 15
(三) 膠囊化 15
六、微生物角蛋白酶未來之應用方向 16
(一) 動物飼料 16
(二) 皮革工業 17
(三) 狂牛症毒蛋白的分解 18
(四)其他應用 19
第二章 材 料 與 方 法 29
第一節:豬毛角蛋白質水解菌株篩選及鑑定 29
第二節:B. cereus H10角蛋白酶純化及特性分析 42
第三節:B. cereus H10角蛋白酶應用之探討 58
第三章 結 果 與 討 論 62
第一節:豬毛角蛋白質水解菌株篩選及鑑定 62
一、 豬毛角蛋白質水解菌株之篩選 62
二、 豬毛角蛋白質分解菌株之鑑定 63
三、 試驗菌株活性表現最佳培養天數測定 64
第二節:B. cereus H10 角蛋白酶純化及特性分析 79
一、 角蛋白酶之純化 79
二、 角蛋白酶分子量 80
三、 角蛋白酶生化特性之分析 81
第三節:B. cereus H10 角蛋白酶應用之探討 101
一、 膠囊化角蛋白酶之特性分析 101
二、 不同受質與不同酵素之比較 102
三、 豬毛及豬毛粉經水解後的營養價值變化 103
第四章 結 論 114
參 考 文 獻 116
作 者 小 傳 127
附 表 128
dc.language.isozh-TW
dc.subject純化zh_TW
dc.subject仙人掌桿菌zh_TW
dc.subject豬毛zh_TW
dc.subject角蛋白&#37238zh_TW
dc.subject蛋白&#37238zh_TW
dc.subjecthog hairen
dc.subjectkeratinaseen
dc.subjectproteaseen
dc.subjectpurificationen
dc.subjectBacillus cereusen
dc.title豬毛篩選菌Bacillus cereus H10角蛋白酶及蛋白酶之純化、特性與應用之研究zh_TW
dc.titlePurification, characterization and applications of keratinase and protease from a newly isolated Bacillus cereus H10 from hog hairen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林慶文,陳小玲,王政騰,劉?睿
dc.subject.keyword仙人掌桿菌,豬毛,角蛋白&#37238,蛋白&#37238,純化,zh_TW
dc.subject.keywordBacillus cereus,hog hair,keratinase,protease,purification,en
dc.relation.page128
dc.rights.note有償授權
dc.date.accepted2008-06-25
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept動物科學技術學研究所zh_TW
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
1.47 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved