Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37931
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳俊杉
dc.contributor.authorChia-Ching Chouen
dc.contributor.author周佳靚zh_TW
dc.date.accessioned2021-06-13T15:51:49Z-
dc.date.available2009-07-03
dc.date.copyright2008-07-03
dc.date.issued2008
dc.date.submitted2008-06-24
dc.identifier.citation參考文獻
M Afshari, N Jalili. (2007), Towards non-linear modeling of molecular interactions arising from adsorbed biological species on the microcantilever surface, International Journal of Non-Linear Mechanics 42, 588-595
Y. Akinaga, T. Nakajima, and K. Hirao. (2001), A density functional study on the adsorption of methanethiolate on the (111) surfaces of noble metals, J. Chem. Phys. 114, 8555
R. Berger, E Delamarche, HP Lang, C Gerber, JK (1997), Surface stress in the self-assembly of alkanethiols on gold, Science 276, 2021-2024
B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, M. Karplus(1983). CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J Comp Chem 4: 187–217
C. E. Bach, M. Giesen, and H. Ibach (1997), Stress relief in reconstruction, Physical Review Letters 78, 4225
D. A. Case, T. E. Cheatham III, T. Darden, H. Gohlke, R. Luo, K.M. Merz, Jr., A. Onufriev, C. Simmerling, B. Wang and R. Woods. (2005), The Amber biomolecular simulation programs, J. Computat. Chem. 26, 1668-1688
David G. Castner, Kenneth Hinds and David W. Grainger (1996), X-ray Photoelectron Spectroscopy Sulfur 2p Study of Organic Thiol and Disulfide Binding Interactions with Gold Surfaces, Langmuir 12 (21), 5083 -5086
Cerius2, Accerly Inc.
D. W. Dareing, T. Thundat (2005), Simulation of adsorption-induced stress of a microcantilever sensor, Journal of Applied Physics. 97, 0 43526.
L. H. Dubois and R. G. Nuzzo (1992), Synthesis, Structure, and Properties of Model Organic Surfaces, Annual Reviews in Physical Chemistry 43, 437
J. El-Ali, P. K. Sorger, K. F. Jensen (2006), Cells on chip, Nature 442, 404
P. Fenter, F. Schreiber, L. Berman, G. Scoles, P. Eisenberger, M.J. Bedzyk (1998), On the structure and evolution of the buried S/Au interface in self-assembled monolayer: X-ray standing wave results, Surface Science 412/413, 213-235
J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H.-J. Güntherodt, Ch. Gerber, J. K. Gimzewski (2000), Translating biomolecular recognition into nanomechanics, Science 288, 316
Kresse G. and Furthmuller J. (1996) Efficient iterative schemes for ab intio total-energy calculation using a plane-wave basis set, Phys. Rev. B 54(16), 11169-11186
J. Gottschalk and B. Hammer. (2002), A density functional theory study of the adsorption of sulfur, mercapto, and methylthiolate on Au(111), J. Chem. Phys. 116, 784.
W. Haiss (2001), Surface stress of clean and adsorbate-covered solid, Reports on Progress in Physics 64, 591
T. Hayashi, Y. Morikawa, and H. Nozoye. (2001), Adsorption state of dimethyl disulfide on Au(111): Evidence for adsorption as thiolate at the bridge site, J. Chem. Phys. 114, 7615.
P. Honhenber and W. Kohn (1964), Inhomogeneous Electron Gas, Phy. Rev. B 136,864
H. Ibach (1997), The role of surface stress in reconstruction, epitaxial growth and stabilization of mesoscopic structure, Surface Science Reports 29, 193
S. Igarashi, A.N. Itakura, M. Kitajima, A.N. Chifen, R. Forch, R. Berger. (2006), Surface stress control using ultraviolet light irradiation of plasma-polymerized thin films, Applied Physics Letters 88, 143119
Yun Hee Jang, Seung Soon Jang, and William A. Goddard. (2005), Structures and properties of self-assembled monolayers of bistable [2]rotaxanes on Au (111) surfaces from molecular dynamics simulations validated with experiment, Journal of the American Chemical Society 127, 1563-1575
Stephen L. Mayyo, Barry D. Olafson, W. A. Goddard. (1990), DREIDING: a generic force field for molecular simulation, J. Phys. Chem. 94, 8897-8909
Material Studio, Accelrys Inc
R. G. Nuzzo, B. R. Zegarski, L. H. Dubois (1987), Fundamental Studies of the Chemisorption of Oranosulfur Compounds on Au(111). Implications for Molecular Self-Assembly on Gold Surfaces, Journal of the American Chemical Society 109, 733-740
K. Pohl, M. C. Bartelt, J. de la Figuera, N. C. Bartelt, J. Hrbek, and R. Q. Hwang(1999), Identifying the forces responsible for self-organization of nanostructures at crystal surfaces, Nature 397, 238
Protein Data Bank www.rcsb.org
I. Rubinstein, E. Sabatani, R. Maoz and J. Sagiv (1986), Organized monolayers on gold electrodes, in Electrochemical Sensors for Biomedical Applications CKN Li (Ed.),The Electrochemical Society 175.
R. Shuttleworth (1950), The surface tension of solid, Proceedings of the Physical Society A 63, 444
R. M. Tromp, A. W. Denier van der Gon, and M. C. Reuter (1992), Surface stress as a driving force for interfacial mixing, Physical Review Letters 68, 2313
U. Tartaglino, E. Tosatti, D. Passerone, and F. Ercolessi (2002), Bending strain-driven modification of surface reconstructions: Au(111), Physical Review B 65, 241406
C. Vericat, M. E. Vela and R. C. Salvarezza (2005), Self-assembled monolayers of alkanethiols on Au(111): surface structure, defects and dynamics, Physical Chemistry Chemical Physics 7, 3258-3268
H. William (2005), Health care in the 21st century, N Engl J Med, 352, 267-72.
Y. Yourdshahyan and Andrew M. Rappe. (2002), Structure and energetics of alkanethiol adsorption on the Au(111) surface, J. Chem. Phys.117, 2
J. Zhao, R. Berger, J. S. Gutmann. (2006), Thermal contributions to the bending of bimaterial cantilever sensors, Applied Physics Letters 89, 033110.
R. Zhang, A. Best, R. Berger, S. Cherian, S. Lorenzoni, E. Macis, R. Raiteri, R. Cain. (2007), Multiwell micromechanical cantilever array reader for biotechnology, Review of Scientific Instruments 78, 084103
Luzheng Zhang, William A. Goddard III, Shaoyi Jiang (2002), Molecular simulation study of the c(4x2). superlattice structure of alkanethiol self-assembled monolayers on Au(111), Journal of Chem. phys. 117, 15
黃榮章(2006),A Study on Analysis of Biomolecular Recognition Using a Nanomechanics-based Biosensor,國立台灣大學應用力學研究所博士論文 (黃榮山教授指導)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37931-
dc.description.abstract以感測懸臂樑變形為主的生物微感測器因擁有高靈敏性、不需任何標定物、成本低廉、容易透過標準微機電製程批量生產等特性,近年來越來越受到重視。如能正確分析此微懸臂樑的表面吸附受力與變形行為,不僅能協助我們深入瞭解其力學性質,更能大幅提升設計此元件的能力。本研究目的即是希望發展多尺度模擬,適當地連結微觀的生物分子吸附機制與巨觀的撓曲變形。
本研究推導出一套完整多尺度理論,連接分子吸附的作用與連體懸臂樑之間的關係,對其力學行為做正確之分析與預測。在多尺度分析中推導出一可分析懸臂樑變形行為受吸附影響的解析式,將原子與量子計算中所獲得的吸附特性代入推導求得巨觀撓曲行為。本研究利用原子尺度模擬計算分析自組裝單層分子(alkanethiol)吸附性與金表面的微觀吸附現象。使用VASP進行第一原理計算,正確的模擬自組裝單層分子吸附在金表面上的行為,包含吸附能及吸附位置等皆與文獻值相近,其吸附能的最大誤差範圍在13%以內,並延伸至使用分子模擬正確計算出多碳鏈的吸附行為,誤差在7%以下。
在多尺度計算中,本研究將原子計算中所獲得的吸附特性代入推導,成功分析文獻中實驗數據,發現不同長度自組裝單層分子與懸臂樑的撓度成正比且呈線性關係與實驗結果相似。本研究分析出為金表面原子因受到不同長度自組裝單層分子影響,而使得原子的產生移動以及受力改變,導致表面應力不同。在最後,並提出與本研究相關的議題,作為以後延伸之參考。
zh_TW
dc.description.abstractMicrocantilever-based biosensors are rapidly becoming an enabling sensing technology for a variety of label-free biological applications due to their wide applicability, versatility and low cost. It is thus imperative for us to reveal the physical origin of adsorption-induced deformation, and to further analyze its implication of microscopic mechanisms on macroscopic deformation. The objective of this work is to develop a multi-scale theory that can analyze deformation of micro-cantilever beam subjected to bio-adsorption mechanisms calculated by ab- initio simulation and classical molecular dynamics.
The multi-scale theory developed herein has successfully correlated atomistic information (the mechanism of bio-adsorption) and continuum description (bending behavior of a cantilever beam). We have studied the adsorption mechanisms of bio-molecules for SAM (self-assembly monolayer, alkanethiolic molecular for n=1~14) adsorbed on gold through ab-initio and molecular dynamics simulation. The ab-initio simulation results are in a good agreement with the literature, and the error of calculated absorption energy is less than 13%. We then extend to longer SAM simulation by molecular dynamics and the calculated absorption energy is less than 7% when comparing with the ab-initio results.
Adsorption-induced stresses for different SAMs (for n=4, 6, 8, 12 and 14) are calculated by the multi-scale method. Calculated deflection based on the adsorption-induced stress agrees well with experimental measurements. Physical origin of adsorption induced deformation is revealed through the change of atomic positions and forces.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:51:49Z (GMT). No. of bitstreams: 1
ntu-97-R95521601-1.pdf: 3966963 bytes, checksum: 014e1e59054499dda977a9c41b281149 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents目錄
誌謝 i
摘要 iii
Abstract v
圖目錄 xi
表目錄 xv
第一章 緒論 1
1-1 研究背景與目的 1
1-2 文獻回顧 3
1-2-1 生物感測器基本原理 3
1-2-2 懸臂樑式生物微感測器實驗發展現況 7
1-2-3 懸臂樑式生物微感測器理論發展現況 10
1-2-4 SAM吸附於金表面發展之現況 11
1-3 研究方法與步驟 14
1-4 論文組織 14
第二章 多尺度分析生物微感測器變形行為之方法 17
2-1 表面應力 17
2-2 理論 20
2-2-1 原子尺度 20
2-2-2 連體理論─Stoney formula 22
2-3 多尺度分析理論推導 25
2-3-1 多尺度分析之目標 25
2-3-2 多尺度分析理論 27
第三章 生物感測器之吸附行為 31
3-1 吸附行為 31
3-1-1 吸附性 31
3-1-2 自組裝分子 32
3-2 原子尺度模擬計算─第一原理計算 34
3-2-1 原子尺度模擬分析理論 34
3-2-2 模型建立與模擬參數 35
3-3 原子尺度模擬計算─分子模擬 40
3-4 模擬結果分析討論 43
3-4-1 第一原理模擬結果 43
3-4-2 分子模擬結果 45
第四章 原子尺度模擬生物感測器 53
4-1 生物感測器模擬之多尺度模擬分析 53
4-2 多尺度分析結果 57
4-3 結果分析與討論 (實驗比對) 64
第五章 結論與建議 69
5-1 結論 69
5-2 建議 70
參考文獻 73
dc.language.isozh-TW
dc.title以多尺度模擬分析吸附現象在懸臂樑式生物微感測器的變形行為zh_TW
dc.titleMultiscale analysis of adsorption-induced deformation of antilever-based biosensoren
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳光鐘,黃榮山
dc.subject.keyword生物感測器,多尺度模擬,吸附現象,自組裝分子,分子模擬,zh_TW
dc.subject.keywordmultiscale,adsorption,biosensor,self-assembly,molecular dynamics,en
dc.relation.page79
dc.rights.note有償授權
dc.date.accepted2008-06-25
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
3.87 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved