Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37929
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳俊杉
dc.contributor.authorShu-Wei Changen
dc.contributor.author張書瑋zh_TW
dc.date.accessioned2021-06-13T15:51:42Z-
dc.date.available2009-07-03
dc.date.copyright2008-07-03
dc.date.issued2008
dc.date.submitted2008-06-25
dc.identifier.citationCurtin, W.A., Miller, R.E., 2003. “Atomistic/continuum coupling in computational materials science.” Modeling and Simulation in Materials Sciences and Engineering, 11, R33-R68.
Edelstein, A. S., Cammarata, R. C., 1998. “Nanomaterials: Synthesis, Properties and Applications,“ CRC Press.
Fischer-Cripps, A. C., 2002. “Nanoindentation,” Springer Press.
Gannepalli, A., Mallapragada, S.K. (2002). “Atomistic studies of defect nucleation during nanoindentation of Au (001),” Physical Review B, 66, 104103.
Gerberich, W. W., Tymiak, N. I., Grunlan, J. C., Horstemeyer, M. F., Baskes, M. I., 2002. “Interpretations of indentation size effects,” Journal of Applied Mechanics, 69, 433-442.
Kiely, J. D., Houston, J. E., 1998. “Nanomechanical properties of Au (111), (001), and (110) surfaces.” Physical Review B, 57(19).
Knap, J., Ortiz, M., 2001. “An analysis of the quasicontinuum method,” Journal of Mechanics and Physics of Solids, 49, 1899-1923.
Kulkarni, Y. 2007. “Coarse-graining of atomistic description at finite temperature.” Ph.D. Thesis, California Institute of Technology.
Liao, F., Girshick, S. L., Mook, W. M., Gerberich, W. W., Zachariah, M. R., (2005) “Superhard nanocrystalline silicon carbide films.” Applied Physic Letters, 86,
Lilleodden, E. T., Zimmerman, J. A., Foiles, S. M. and Nix, W. D. (2003). “Atomistic simulations of elastic deformation and dislocation nucleation during nanoindentation,” Journal of the Mechanics and Physics of Solids, 51(5), 901-920.
Meyers, M. A., Mishra, A., Benson, D.J., (2006). “Mechanical properties of nanocrystalline materials.” Progress in Materials Science. 51, 427-556.
Miller, R., Ortiz, M., Phillips, R., Shenoy, V., Tadmor, E.B., 1998a. “Quasicontinuum models of fracture and plasticity.” Eng. Fract. Mech. 61, 427-444.
Miller, R., Tadmor, E.B., Phillips, R., Ortiz, M., 1998b. “Quasicontinuum simulation of fracture at the atomic scale.” Model. Simul. Mater. Sci. Eng. 6, 607-638.
Miller, R., Tadmor, E. B., 2003. “The quasicontinuum method: overview, applications and current directions.” Journal of Computer-Aided Materials Design, 9, 203-39.
Oliver, W. C. and Pharr, G. M. (1992). “Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments”, Journal of Materials Research, 7(6), 1564-1580.
Press, W.H., Vetterling, W.T., Teukolsky, S.A. and Flannery, B.P. (2000) “Numerical Recipes in C++: The Art of Scientific Computing,” Second Edition, Cambridge University Press.
Rodney, D., Phillips, R., 1999. “Structure and strength of dislocation junctions: an atomic level analysis.” Phys. Rev. Lett. 82, 1704-1707.
Shenoy, V.B., Miller, R., Tadmor, E.B., Phillips, R., Ortiz, M., 1998. “Quasicontinuum models of interfacial structure and deformation.” Phys. Rev. Lett. 80, 742-745.
Shenoy, V. B., Miller, R., Tadmor, E. B., Rodney, D., Phillips, R., Ortiz, M., 1999a. “An adaptive finite element approach to atomic scale mechanics - the quasicontinuum method.” Journal of the Mechanics and Physics of Solids, 47, 611-641.
Shenoy, V., Shenoy, V., Phillips, R., 1999b. “Finite temperature quasicontinuum methods.” Mater. Res. Soc. Symp. Proc. 538, 465-471.
Shenoy, V.B., Phillips, R., Tadmor, E.B., 2000. “Nucleation of dislocations beneath a plane strain indenter.” J. Mech. Phys. Solids 48, 649-673.
Swadener, J.G., George, E. P., Pharr, G. M., 2002. “The correlation of the indentation size effect measured with indenters of various shapes.” J. Mech. Phys. Solids 50, 681-694.
Tadmor, E. B., Ortiz, M., Phillips, R., 1996. “Quasicontinuum analysis of defects in solids.” Philosophical Magazine A, 73, 1529-1563.
Tadmor, E. B., Miller, R., Phillips, R., 1999. “Nanoindentation and incipient plasticity.” Journal of Materials Research, 14, 2233-2250.
Tadmor, E.B., Waghmare, U.V., Smith, G.S., Kaxiras, E., 2002. “Polarization switching in PbTiO3: An ab initio finite element simulation.” Acta Mat., 50, 2989-3002.
Zimmerman, J. A., Kelchner, C. L., Klein, P. A., Hamilton, J. C., Foiles, S. M. (2001). “Surface Step Effects on Nanoindentation,” Journal of Applied Physics, 89(1), 99-104.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37929-
dc.description.abstract正確計算材料在奈米尺度的受力與變形行為,能協助我們深入瞭解奈米尺度的力學性質,提供先進奈米機電元件的設計基礎。但對於當今引領許多創新研發的奈米科技而言,其關心的尺度所包含的原子數目,往往不是分子動力(molecular dynamics)分析所能負擔,而其於缺陷或原子結構生成或互動等的微觀物理現象又不是以連體力學為基礎的有限元素法(finite element)材料組成律所能描述。因此,妥善連接此兩大模擬理論的相關多尺度理論與計算模擬,是目前學術界或工業界急切需要的模擬理論。
緣此,本研究探討連結原子尺度分析與連體力學計算之多尺度擬連體法(quasicontinuum, QC),此法透過引進有限元素的kinematic constraints (QC with kinematic constraint, QCKC) 耦合分子動力與有限元素,一方面利用原子尺度的微觀計算處理由材料瑕疵或局部外力造成之非均勻變形,另一方面則以有限元素保留連體力學架構處理較大區域的均勻變形,大幅減少原子的自由度數目,也提供了發展簡化力與能量的計算式以達到減少計算量的可能。目前簡化力與能量的計算方法可分為兩類,其一為利用Cauchy-Born法則來減少能量計算的能量近似擬連體理論(QCE),另一則為利用cluster summation rule以減少力的計算的力近似擬連體理論(QCF),本研究的主要目的是一方面探討此兩方法是否能有效率並準確近似QCKC,另一方面對其進行改進,進而提出完善的擬連體理論。
在原子區域(atomistic region)與有限元素區域(finite element region)的交界處,本研究發現不論Cauchy-Bron法則或是cluster summation法則都無法成功連結此兩區域,為了解決傳統擬連體法中,原子區域與有限元素區域的不協調,本研究提出過渡區(transition region)的觀念,將局部代表原子(local representative atom)進一步分為過渡區的代表原子(transition representative atom)以及純局部代表原子(pure local representative atom),再將被代表原子(slaved atom)區分為過渡區的被代表原子(slaved transition atoms)及純被代表原子(pure slaved atom),針對能量與力的計算方式加以改良,並驗證新的能量與力的計算方式能準確的傳遞原子區的不均勻至有限元素區,克服了此兩區域不協調的課題。
在有限元素區域,本研究探討利用QCE與QCF近似QCKC的誤差,結果顯示,QCE的近似誤差主要取決於有限元素的大小,有限元素越大則QCE的誤差越小,而其誤差主要來自於Cauchy-Born法則「局部」的假設,因此其誤差是無法避免的;QCF的近似誤差則主要決定於取樣原子(sampling atom)的多寡,結果顯示如果要將誤差控制在10%以下則必須取樣超過90%的原子,因此在準確性的考量下QCF法將變得很沒有效率,不過相較於QCE法,QCF法沒有「局部」假設所造成的誤差,因此其誤差可藉由較多的取樣原子屏除之。
有鑒於QCE與QCF法在有限元素區的近似都有其未盡之虞,本研究提出新的取樣方法來近似有限元素區的力,經由引進原子勢能的性質,以及分析同一元素中被代表原子的受力分布,純被代表原子(pure slaved atom)進一步被分為內部純被代表原子(interior pure slaved atom)與表面純被代表原子(exterior pure slaved atom),結果顯示不論元素的大小為何,只需要20Å的取樣半徑即可將誤差控制在10%以下,相當於當元素的邊長為960Å時只需要0.07%的取樣原子,遠遠少於QCF的超過90%的取樣原子,因此新的取樣方法有效率並準確的近似QCKC法。
最後,經由以上成果的整合,本研究成功發展出在原子、過渡與有限元素區域都能有效率且準確近似QCKC的擬連體法,並將其應用於奈米壓印中硬度尺寸效應的探討,本研究使用圓形壓印子針對金金屬材料在奈米壓印下的硬度尺寸效應,一方面利用分子動力進行半徑15Å, 20Å與25Å的圓形壓印子壓印,另一方面利用擬連體法進行半徑50 Å的圓形壓印子壓印,結果顯示對於圓形的壓印子,硬度對於壓印深度沒有尺寸效應,而是對於壓印子的大小有尺寸效應,硬度隨著壓印子的變大而減少,相符於實驗觀察到的現象。
zh_TW
dc.description.abstractThe theoretical and computational limitations of continuous description and atomistic modeling on capturing phenomena at the micro- or nano-scale have called for the need to fuse atoms with finite elements. Atomistic modeling has been used to address a wide variety of deformation processes in solids in the past decades. Nevertheless, the length scale restriction of atomistic modeling has long been a substantial obstacle in making useful prediction. In the past few years, a very promising method called the quasicontinuum (QC) method has been developed to circumvent this length scale problem.
By using kinematic constraints through finite element interpolation, the QC method with kinematic constraints (QCKC) allows for developing fully atomistic scale resolution near defects while exploiting coarser description further away to reduce redundant degrees of freedom. Furthermore, utilization of kinematic constraints makes it possible to develop approximated energy and force formulations in an efficient way. Two approximated methods have been developed. One is based on energy approximation (QCE) and the other on force approximation (QCF). The QCE was developed by Tadmor et al. (1996) and Shenoy et al. (1999a) by using the Cauchy-Born rule to approximate the energy functional. The QCF was developed by Knap and Ortiz (2001) by introducing the cluster summation rule to approximate force calculations. The objective of this thesis is to revisit current practice in QC, analyze variants of QC to reproduce QCKC and derive novel formulations for improvement.
For the interface of atomistic region and finite elements, improperly applying Cauchy-Born rule and cluster summation rule at the interface have been identified and the deficiency is removed by introducing transition entities to the QC method. New description of the force formulation that allows transition elements to correctly transmit inhomogeneity from the atomistic to the continuum regions is proposed. The formulation is verified through reproducing the QCKC.
The errors of force formulation for finite element region of both the QCE and QCF methods are analyzed. For the QCE method, errors are mainly governed by the size of elements but not by the variation of deformation gradients. The error mainly results from the inherent “local” assumption of the Cauchy-Born rule and thus it is unavoidable. For the QCF method, errors are mainly affected by the ratio of the number of sampling atoms to the number of total slaved atoms. To control the error within 10% the sampling ratio should be greater than 90%, an indication of a very inefficient scheme. Generally speaking, the QCE method is only suitable for large elements while the QCF method is only suitable for small elements.
By considering the property of central symmetry potential and by analyzing the distribution of atomic forces of represented atoms within an element, a novel summation rule based on decomposition of force contributions from slaved atoms in exterior cluster is developed. The new summation rule approximates the forces for finite element region accurately and efficiently. It is shown that for a constant sampling cutoff (20 angstroms), the error of computing force is controlled under 10% for all sizes of elements. Therefore, the force formulation using the summation rule proposed herein reproduces the QCKC method efficiently.
Finally, QC with accurate and efficient formulations to reproduce the QCKC method at the atomistic, transition and finite element regions is compiled together and used to study indentation size effect of Au thin film with spherical indenters. The results show that for a spherical indenter, the hardness is not affected by indentation depth but by the sphere radius. The hardness decreases with the increase of the sphere radius.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:51:42Z (GMT). No. of bitstreams: 1
ntu-97-R94521608-1.pdf: 6517181 bytes, checksum: 7055b8c45b09e23cb299bd9336f4983a (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents誌謝 I
Abstract III
摘要 VII
Table of Contents XI
List of Figures XV
Chapter 1 Introduction 1
1.1 Background 1
1.2 Literature Review 4
1.3 Objectives of the Thesis 6
1.4 Organization of the Thesis 7
Chapter 2 Overview of QC Method 8
2.1 The Kinematic Constraint Assumption 9
2.2 QCKC Method 10
2.3 Energy Based QC Method (QCE) 11
2.4 Force Based QC Method (QCF) 16
2.5 Automatic Mesh Adaption 18
2.6 Concerns and Challenges 21
Chapter 3 Transition Elements of QC Method 25
3.1 Energy and Force Calculations with Transition Elements 26
3.1.1 Energy calculations 26
3.1.2 Force calculations 30
3.2 Analysis of Transition Elements 35
3.3 Numerical Examples 38
3.3.1 Force analysis using a Lennard-Jones potential 38
3.3.2 Force analysis for a grain boundary using EAM potential 41
3.3.3 Nanoindentation simulation in 3D 44
3.4 Summary 47
Chapter 4 Force Analysis of QC in Finite Element Region 49
4.1 1D Analysis 51
4.1.1 1D Model Description 51
4.1.2 Analysis of Energy Based QC 53
4.1.3 Analysis of Force Based QC 60
4.2 2D Analysis 65
4.2.1 2D Model Description 65
4.2.2 Analysis of Energy Based QC in 2D 67
4.2.3 Analysis of Force Based QC in 2D 69
4.3 Summary 72
Chapter 5 Novel Summation Method 74
5.1 Exterior Cluster Summation Method 75
5.1.1 Redundant Atoms in Force Calculation 75
5.1.2 Interior and Exterior Pure Slaved Atoms 76
5.1.3 Exterior Cluster Summation Method 79
5.2 Novel Summation Method 84
5.2.1 Analysis of the Atomic Forces in an Element 84
5.2.2 Novel Summation Method 89
5.2.3 Numerical Results 91
5.3 Summary 98
Chapter 6 Hardness and Depth Size Effects of Nanoindentation 99
6.1 Methodology of QC Method 99
6.2 Nanoindentation and Hardness Size Effect 101
6.3 Simulation Results 103
6.3.1 Quantify Hardness at Atomistic Scale 103
6.3.2 MD Simulation Results 104
6.3.3 QC Simulation Results 111
Chapter 7 Conclusions and Future Work 118
7.1 Conclusions 118
7.2 Future Works 121
dc.language.isoen
dc.subject擬連體法zh_TW
dc.subject分子動力學zh_TW
dc.subject有限元素法zh_TW
dc.subject多尺度模擬zh_TW
dc.subject過渡元素zh_TW
dc.subjectmolecular dynamicsen
dc.subjectghost forceen
dc.subjectfinite elementsen
dc.subjecttransitionen
dc.subjectquasicontinuumen
dc.title耦合原子與有限元素的創新理論與計算方法之研究zh_TW
dc.titleNovel Quasicontinuum Theory and Computational
Method for Coupling Atoms and Finite Elements
en
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee呂良正,吳光鐘
dc.subject.keyword擬連體法,分子動力學,有限元素法,過渡元素,多尺度模擬,zh_TW
dc.subject.keywordquasicontinuum,transition,molecular dynamics,finite elements,ghost force,en
dc.relation.page126
dc.rights.note有償授權
dc.date.accepted2008-06-25
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
6.36 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved