請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37910完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 沈弘俊(Horn-Jiunn Sheen) | |
| dc.contributor.author | Yu-Chih Hung | en |
| dc.contributor.author | 洪御誌 | zh_TW |
| dc.date.accessioned | 2021-06-13T15:50:37Z | - |
| dc.date.available | 2018-12-31 | |
| dc.date.copyright | 2008-07-02 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-06-26 | |
| dc.identifier.citation | Chung, Y. C., Hsu, Y. L., Jen, C. P., Lu, M. C., Lin, Y. C., “Design of passive mixer utilizing microfluidic self-circulation in the mixing chamber”, Lab on a Chip, 4: 70-77, 2004.
Gerlach, T., Schuenemann, M., and Wurmus, H., “A new micropump principle of the reciprocating type using pyramidic micro flow channels as passive valves”, Journal of Micromechanics and Microengineering, Vol. 5, pp. 199-201, 1995. Hessel, V., Löwe, H., & Schönfeld, F., “Micromixers – A Review on Passive and Active Mixing Principles”, Chemical Engineering Science 60, 2479-2501, 2005. Lee, Y. K., Tabeling, P., Shih, C., & Ho, C. M., “Characterization of a MEMS-fabricated Mixing Device”, 2000ASME International Mechanical Engineering Congress & Exposition Orlando, pp. 505-511, 2000. Liu, R.H., Stremler, M.A., Sharp, K.V., Olsen, M.G., Santiago, J.G., Adrian, R.J., Aref, H., and Beebe, D.J., “Passive Mixing in a Three-dimensional Serpentine Microchannel,” Journal of Micro Electro Mechanical Systems, Vol. 9, No. 2, pp. 190-197, 2000. Lu, L. H., Ryu, K.S., Liu, C., “A Magnetic Microstirrer and Array for Microfluidic Mixing”, Journal of Microelectromechanical Systems, Vol. 11, No. 5, October, pp. 462-469 , 2002. Nguyen, N. T., & Wu, Z., “Micromixers – A Review”, Journal of Micromechanics and Microengineering, 15, R1-R16, 2005. Olsson, A., Stemme, G. & Stemme, E., “A valve-less planar fluid pump with two pump chambers”, Sensors and Actuators A., Vol. 46, pp. 549-556, 1995. Olsson, A., “Valve-less Diffuser Pumps for Liquids” Thesis, Royal Institute of Technology, Stockholm, Sweden, 1996. Olsson, A., Enoksson, P., Stemme, G. & Stemme, E., “A valve-less planar pump isotropically etched in silicon ”, Journal of Micromechanics and Microengineering, Vol. 6, pp. 87-91, 1996. Olsson, A., Stemme, G. & Stemme, E., “Diffuser-element design investigation for valve-less pumps”, Sensors and Actuators A., vol. 57, pp. 137-143, 1996. Olsson, A., Enoksson, P., Stemme, G. & Stemme, E., “Micromachined flat-walled valv-eless diffuser pumps”, Journal of Microelectromechanical Systems, Vol. 6, No. 2, June, pp. 161-166 , 1997. Olsson, A., Larsson, O., Holm, J., Lundbladh, L., Ohman, O. & Stemme, G., “valve-less diffuser micropumps fabricated using thermoplastic replication”, Sensors and Actuators A., Vol. 64, pp. 63-68, 1998. Olsson, A., “Valve-less Diffuser Micropumps” Thesis, Royal Institute of Technology, Stockholm, Sweden, 1998. Ryu, K.S., Shaikh, K., Goluch, E., Fan, Z., and Liu, C., “Micromagnetic stir-bar mixer integrated with parylene microfluidic channels,” Lab on a Chip, Vol. 4, pp. 608-613, 2004. Sheen, H.J., Hsu, C.J., Wu, T.H., Chu, H.C., Chang, C.C., and Lei, U., “Experimental study of flow characteristics and mixing performance in a PZT self-pumping micromixer, ” Sensors and Actuators A, Vol. 139, pp. 237-244, 2007. Sheen, H.J., Hsu, C.J., Wu, T.H., Chang, C.C., Chu, H. C., Yang, C.Y., Lei, U., “Unsteady flow behaviors in an obstacle-type valveless micropump by micro-PIV, ” Microfluid Nanofluid, Vol. 4, p331-342, 2008. Stemme, E., & Stemme, G., “A Valveless Diffuser/Nozzle-based Fluid Pump”, Sensors and Actuators A, 39 159-167, 1993. Truesdell, R. A., Vorobieff, P. V., Sklar, L. A., & Mammoli, A. A., “Mixing of a Continuous Flow of Two Fluids due to Unsteady Flow”, Physical Review E 67, 066304, 2003. 朱信彰, 利用非穩態流場特性開發微粒子分離器之研究, 國立台灣大學應用力學研究所碩士論文, 2006. 何家維, 整合無閥門壓電幫浦之脈衝式混合器設計, 國立台灣大學應用力學研究所碩士論文, 2007. 行政院國家科學委員會精密儀器發展中心, 微機電系統與微系統—設計與製造, 全華科技圖書公司, 民國九十二年七月初版一刷, ISBN 957-01-4265-0 平裝。 李青峻, 以非穩態流場開發多功能微流體裝置之研究, 國立台灣大學應用力學研究所博士論文, 2007. 吳宗信, 邵雲龍, 黃柏誠, 鄭宗杰, 微混合器之製作與研究, 奈米通訊, 第十二卷第一期, 2002. 吳咨亨, 無閥門壓電微幫浦與微混合器之整合設計, 國立台灣大學應用力學研究所碩士論文, 2005. 吳錦榮, 利用脈衝調頻染料雷射研究單分子光譜學, 國立中山大學化學研究所碩士論文, 2001. 周卓明, 壓電力學, 全華科技圖書公司, 民國九十二年十一月初版, ISBN 957-21-4240-2平裝。 凃智凱, 新式無閥門微幫浦, 國立台灣大學應用力學研究所碩士論文, 2004. 徐泰然, 微機電系統與微系統—設計與製造, 普林斯頓國際有限公司, 民國九十二年九月初版一刷, ISBN 957-493-776-3。 楊政穎, 林俊達, 李雨, “A Valve-less Micro-pump based on Asymmetric Obstacles”, 第七屆奈米工程暨微系統技術研討會論文集, pp. 330-333, 台灣大學, Nov. 20-21, 2003. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37910 | - |
| dc.description.abstract | 在微流體的領域中,如何使兩種以上的流體快速的混合是很重要的議題;本論文利用微機電製程技術,成功的開發出一種本身具有推動流體且具混合能力的新型微流體裝置。其驅動流體及啟動微轉子混合機制的元件皆是透過無閥門壓電微幫浦,當貼附於微幫浦振動腔體的壓電片上下反覆振動,會使微流道內的流體產生往復運動進而推動微轉子混合區內的微轉子,另外透過改變對壓電片的操作訊號,可以改變微轉子的轉速,使欲混合流體受到不同程度的攪拌,藉著破壞流體之間存在的流體界面,可以使混合效能大大提升。本研究開發的微轉子幫浦混合裝置其尺寸大小為長25mm、寬11mm、厚0.65mm,並由實驗結果得知,此裝置能夠在操作電壓10Vpp~40Vpp、操作頻率0.1kHz~1.5kHz下,能驅動15~130ul/min的體積流率,且擁有在10Vpp的低操作電壓下,將混合指標提升至0.9的高混合能力。本文將說明微轉子混合機制的設計方法,同時建立完整的實驗方法,進一步證實了微轉子幫浦混合裝置的可行性,未來可將積體電路或其他元件整合於晶片上,成為低成本的微流體系統。 | zh_TW |
| dc.description.abstract | For microfluidic flows, one of the very important subjects is to have two or more fluids thoroughly mix in a short time and distance. In this study, a new microfluidic device possesses both pumping and mixing capabilities has been successfully developed by MEMS techniques. The flow was driven by a PZT valveless micropump and a microrotor was integrated into the pumping system. The oscillatory flow provided by the pumping chamber impinged the microrotor blades to have the microrotor rotate. The dimensions of the present micro-device are 25 mm in length, 11 mm in width, and 0.65 mm in thickness. The results revealed that mixing qualities were affected by rotating speeds of the microrotor, which depended on the driving frequencies and voltages. The mixing efficiencies were significantly enhanced by increasing the rotating speed which could rapidly stir the two different fluids and increase their interfacial areas. In this experiment, the flow rates of 15-130ul/min were measured at excitation voltages of 10-40 Vpp and frequency of 0.1k~1.5 kHz. Moreover, results show that good mixing efficiencies were demonstrated and the mixing indices were higher than 0.9. In summary, the current device with simple fabrication presents high pumping capability and mixing efficiencies even at low excitation voltages. These characteristics are all favorable for the integration in a microfluidic system. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T15:50:37Z (GMT). No. of bitstreams: 1 ntu-97-R95543027-1.pdf: 3231703 bytes, checksum: 58966a08146454af3fb41ad2674330b1 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 口試委員會審定書
致謝 摘要......................................................i Abstract.................................................ii 目錄....................................................iii 表目錄..................................................vii 圖目錄.................................................viii 符號說明................................................xii 第一章 緒論..............................................1 1-1前言...................................................1 1-2研究動機...............................................3 1-3文獻回顧...............................................4 1-3-1無閥門壓電微幫浦.....................................4 1-3-2微混合器.............................................7 1-4研究目的..............................................10 1-5論文架構..............................................11 第二章 原理與設計.......................................13 2-1微幫浦工作原理........................................13 2-2混合原理..............................................14 2-3微轉子式幫浦混合裝置的設計............................16 2-4驅動方式選擇..........................................18 2-5壓電材料選擇..........................................18 2-6製程的選擇............................................19 2-6-1微流道及微轉子製程..................................20 2-6-2封裝製程............................................22 第三章 元件製作與實驗設備架設...........................23 3-1光罩設計與製備........................................23 3-2基材的清潔............................................24 3-3矽晶圓微轉子製作......................................25 3-3-1黃光微影製程-微轉子厚度控制.........................26 3-3-2矽晶圓蝕刻製程-微轉子厚度控制.......................28 3-3-3黃光微影製程-微轉子成形.............................29 3-3-4矽晶圓蝕刻製程-微轉子成形...........................30 3-4矽晶圓微流道製作......................................30 3-4-1黃光微影製程........................................30 3-4-2矽晶圓微流道蝕刻製程................................31 3-5微轉子式幫浦混合裝置製作..............................32 3-5-1微流道出入口設置....................................32 3-5-2微轉子放置..........................................33 3-5-3微轉子式幫浦混合裝置封裝............................33 3-5-4壓電片的固定........................................34 3-6實驗設備與儀器架設....................................34 第四章 實驗結果與討論...................................37 4-1微轉子式幫浦混合裝置的製作結果........................37 4-1-1微流道製作結果......................................37 4-1-2微轉子混合區製作結果................................37 4-1-3微轉子製作結果......................................38 4-1-4微轉子式幫浦混合裝置封裝結果........................39 4-2微轉子式幫浦混合裝置效能測試..........................40 4-2-1微幫浦的流量分析....................................40 4-2-2微轉子混合區流場觀察................................42 4-2-3微轉子轉速的量測....................................43 4-2-4微轉子式幫浦混合裝置的混合現象......................43 4-2-4微轉子式幫浦混合裝置的混合指標......................44 4-2-5混合效能比較........................................48 4-3穩態流場對微轉子式幫浦混合裝置混合效能影響............49 第五章 結論與未來展望...................................51 5-1結論..................................................51 5-2未來展望..............................................52 參考文獻.................................................55 附表.....................................................58 附圖.....................................................60 | |
| dc.language.iso | zh-TW | |
| dc.subject | 微幫浦 | zh_TW |
| dc.subject | 微轉子 | zh_TW |
| dc.subject | 微機電製程 | zh_TW |
| dc.subject | 微混合器 | zh_TW |
| dc.subject | 往復流 | zh_TW |
| dc.subject | 壓電片 | zh_TW |
| dc.subject | oscillatory flow | en |
| dc.subject | microrotor | en |
| dc.subject | pumping-mixing device | en |
| dc.subject | MEMS | en |
| dc.subject | PZT plate | en |
| dc.subject | micromixer | en |
| dc.title | 微轉子式微流體幫浦暨混合裝置 | zh_TW |
| dc.title | A Pumping-Mixing Microfluidic Device with a Microrotor | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳光鐘(Kuang-Chong Wu),李雨(U Lei),張正憲(Jeng-Shian Chang),翁宗賢(Tzong-Shyan Wung) | |
| dc.subject.keyword | 微機電製程,微幫浦,微轉子,微混合器,往復流,壓電片, | zh_TW |
| dc.subject.keyword | MEMS,pumping-mixing device,microrotor,micromixer,oscillatory flow,PZT plate, | en |
| dc.relation.page | 101 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-06-26 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 3.16 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
