請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37907完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 朱浩華(Hao-hua Chu) | |
| dc.contributor.author | Ho-lin Chang | en |
| dc.contributor.author | 張鶴齡 | zh_TW |
| dc.date.accessioned | 2021-06-13T15:50:27Z | - |
| dc.date.available | 2008-07-02 | |
| dc.date.copyright | 2008-07-02 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-06-26 | |
| dc.identifier.citation | [1] Ubisense. http://www.ubisense.net
[2] M. Maroti, B. Kusy, G. Balogh, P. Volgyesi, A. Nadas, K. Molnar, S. Dora, and A. Ledeczi, “Radio interferometric geolocation,” in Proc. of 3rd ACM International Conference on Embedded Networked Sensor Systems (SenSys), November 2005. [3] B. Kusy, M. Maroti, G. Balogh, P. Volgyesi, J. Sallai, A. Nadas, A. Ledeczi, and L. Meertens, “Node density independent localization,” in Proc. of 5th International Symposium on Information Processing in Sensor Networks (IPSN/SPOTS), April 2006. [4] B. Kusy, G. Balogh, A. Ledeczi, J. Sallai, and M. Maroti, “inTrack: High precision tracking of mobile sensor nodes,” in Proc. of 4th European Workshop on Wireless Sensor Networks (EWSN), January 2007. [5] B. Kusy, J. Sallai, G. Balogh, A. Ledeczi, V. Protopopescu, J. Tolliver, F. DeNap, and M. Parang, “Radio interferometric tracking of mobile wireless nodes,” in Proc. of 5th International Conference on Mobile systems, applications and services (MobiSys), June 2007. [6] B. Kusy, A. Ledeczi, and X. Koutsoukos, “Tracking mobile nodes using RF Doppler shifts,” in Proc. of 5th ACM International Conference on Embedded Networked Sensor Systems (SenSys), November 2007. [7] N. B. Priyantha, A. Chakraborty, and H. Balakrishnan. “The Cricket location-support system,” in Proc. of 6th ACM International Conference on Mobile Computing and Networking (MobiCom), August 2000. [8] G. Zhou, T. He, and J. A. Stankovic, “Impact of radio irregularity on wireless sensor networks,” in Proc. of 2nd ACM International Conference on Mobile Systems, Applications, and Services (MobiSys), June 2004. [9] A. Harter, A. Hopper, P. Steggles, A. Ward, and P. Webster, “The anatomy of a context-aware application,” in Proc. of 5th ACM International Conference on Mobile Computing and Networking (Mobicom), August 1999. [10] C. D. McGillem and T. S. Rappaport, “A beacon navigation method for autonomous vehicles,” IEEE Transactions on Vehicular Technology, vol.38, no.3, pp.132-139, August 1989. [11] F. Viola and W.F. Walker, “A comparison of the performance of time-delay estimators in medical ultrasound,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.50, no.4, pp. 392-401, April 2003. [12] A. Nasipuri and R. el Najjar, “Experimental evaluation of an angle based indoor localization system,” in Proc. of 5th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt), April 2006. [13] J. Hightower and G. Borriello, “Location systems for ubiquitous computing,” IEEE Computer, vol.34, no.8, pp.57-66, Aug 2001. [14] J. Scott and B. Dragovic, “Audio location: accurate low-Cost location sensing,” in Proc. of 3rd International Conference on Pervasive Computing, May 2005. [15] http://tinyos.cvs.sourceforge.net/tinyos/tinyos-1.x/contrib/vu/apps/RipsOneHop/ [16] M. Tuchler, V. Schwarz, and A. Huber, “Location accuracy of an UWB localization system in a multi-path environment,” in Proc. of IEEE International Conference on Ultra-Wideband (ICUWB), September 2005. [17] S. Gezici, Z. Tian, G. B. Giannakis, H. Kobayashi, A. F. Molisch, H. V. Poor, and Z. Sahinoglu, “Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks,” IEEE Signal Processing Magazine, July 2005. [18] P. Bahl and V. Padmanabhan, “RADAR: an in-building RF-based user location and tracking system,” in Proc. of 19th IEEE International Conference on Computer Communications (InfoCom), March 2000. [19] L. Girod, M. Lukac, V. Trifa, and D. Estrin, “The design and implementation of a self calibrating acoustic sensing platform,” in Proc. of 3rd ACM International Conference on Embedded Networked Sensor Systems (SenSys), October 2006. [20] K. R¨omer, “The lighthouse location system for smart dust,” in Proc. of 1st ACM International Conference on Mobile Systems, Applications, and Services (MobiSys), May 2003. [21] R. Stoleru, T. He, J. A. Stankovic, and D. Luebke, “A high-accuracy, low-cost localization system for wireless sensor networks,” in Proc. of 3rd ACM International Conference on Embedded Networked Sensor Systems (SenSys), November 2005. [22] T. He, C. Huang, B. M. Blum, J. A. Stankovic, and T. Abdelzaher, “Range-free localization schemes in large-scale sensor networks,” in Proc. of 9th ACM International Conference on Mobile Computing and Networking (MobiCom), September 2003. [23] F. Izquierdo, M. Ciurana, F. Barcelo, J. Paradells, and E. Zola, “Performance evaluation of a TOA-based trilateration method to locate terminals in WLAN,” in Proc. of 1st IEEE International Symposium on Wireless Pervasive Computing, January 2006. [24] N. Patwari, A. O. Hero III, M. Perkins, N. S. Correal, R. J. O'Dea, “Relative location estimation in wireless sensor networks,” IEEE Transactions Signal Process, Special Issue on Signal Processing in Networking, vol. 51, no.9, pp. 2137-2148, August 2003.. [25] N. Dragos, and B. Nath, “Ad hoc positioning system (APS) using AoA,” in Proc. of 22nd IEEE International Conference on Computer Communications (InfoCom), April 2003 [26] A. Savvides, C. C. Han, and M. B. Srivastava, 'Dynamic fine-grained localization in ad-hoc networks of sensors,' in Proc. of 7th ACM International Conference on Mobile Computing and Networking (MobiCom), July 2001. [27] L. Cong and W. Zhuang, “Hybrid TDOA/AOA mobile user location for wideband CDMA cellular systems,” IEEE Transactions on Wireless Communications, vol. 1, no. 3, pp. 439-447, July 2002. [28] N. Patwari, “Relative location estimation in wireless sensor networks,” IEEE Transactions on Signal Processing, vol. 51, no. 8, pp. 2137-2148, Aug. 2003.. [29] D. Niculescu, “Positioning in ad hoc sensor networks,” IEEE Networks, vol. 18, no. 4, pp. 24-29, July 2004.. [30] K. Lorincz and M. Welsh, “Motetrack: a robust, decentralized approach to RF-based location tracking,” in Proc. of 1st International Workshop on Location- and Context-Awareness (LoCA), May 2005. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37907 | - |
| dc.description.abstract | 這篇論文提出了一個利用旋轉發信器所發展的一套精準室內定位系統:SpinLoc。SpinLoc利用旋轉發信器製造可預測且極具辨識性的都普勒訊號,達到公分等級的定位精準度。這套系統首先分析旋轉發信器發出的都普勒頻率位移,以求得從旋轉中心至目標物的方向角。利用兩到三個旋轉發信器求得許多個方向角後,便可以定到目標物的位置。經過設計及在MICA2 mote上實作之後,我們拿去室內停車場做實驗。實驗結果顯示SpinLoc達到50%小於40~50公分以及90%小於70~90公分的定位精準度。 | zh_TW |
| dc.description.abstract | This thesis proposes the novel use of spinning beacons for precise indoor localization. The proposed “SpinLoc” (Spinning Indoor Localization) system uses “spinning” (i.e., rotating) beacons to create and detect predictable and highly distinguishable Doppler signals for sub-meter localization accuracy. The system analyzes Doppler frequency shifts of signals from spinning beacons, which are then used to find the direction from the spinning center to the target. By obtaining direction of the target from two or more spinning beacons, SpinLoc can precisely locate stationary targets. After designing and implementing the system using MICA2 motes, its performance was tested in an indoor garage environment. The experimental results revealed a median error of 40~50 centimeters and a 90% error of 70~90 centimeters. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T15:50:27Z (GMT). No. of bitstreams: 1 ntu-97-R95922004-1.pdf: 875549 bytes, checksum: 8542e6c35cb279f4690f186f9e6b8ce8 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | Acknowledgement i
Abstract iii 摘要 v List of Figures ix Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Contribution 2 Chapter 2 Related Work 5 2.1 Range-based methods 6 2.2 Range-free methods 7 Chapter 3 SpinLoc Approach 9 3.1 Doppler Effect 10 3.2 Doppler Angulation 11 3.3 Localization Algorithm 14 Chapter 4 System Overview 17 4.1 Doppler Signal Generation 20 4.2 Frequency Record 21 4.3 Orientation Angle Calculation 21 4.4 Location Estimation 25 Chapter 5 Parameter Tuning 29 Chapter 6 Implementation 35 Chapter 7 Experiment Results 37 7.1 SpinLoc Positional Errors 39 7.2 Doppler Angulation Filtering 41 7.3 Data Collection Times 43 7.4 Rotational Velocities 44 7.5 Interference Frequency 45 Chapter 8 Sources of Error 47 Chapter 9 Conclusions and Future Work 51 Bibliography 53 Appendix 59 | |
| dc.language.iso | en | |
| dc.subject | 都普勒效應 | zh_TW |
| dc.subject | 無線感測網路 | zh_TW |
| dc.subject | 室內定位 | zh_TW |
| dc.subject | indoor localization | en |
| dc.subject | wireless sensor network | en |
| dc.subject | Doppler Effect | en |
| dc.title | 利用旋轉發信器之精準室內定位 | zh_TW |
| dc.title | High-Precision Indoor Localization Using Spinning Beacons | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃寶儀,陳伶志,金仲達,曾煜棋 | |
| dc.subject.keyword | 無線感測網路,室內定位,都普勒效應, | zh_TW |
| dc.subject.keyword | wireless sensor network,indoor localization, Doppler Effect, | en |
| dc.relation.page | 63 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-06-26 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 855.03 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
