Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37890
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor阮雪芬(Hsueh-Fen Juan)
dc.contributor.authorTzu-Ying Leeen
dc.contributor.author李姿瑩zh_TW
dc.date.accessioned2021-06-13T15:49:27Z-
dc.date.available2018-06-26
dc.date.copyright2008-07-07
dc.date.issued2007
dc.date.submitted2008-06-27
dc.identifier.citation1. Lee, R.C., R.L. Feinbaum, and V. Ambros, The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993. 75(5): p. 843-54.
2. Wightman, B., I. Ha, and G. Ruvkun, Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell, 1993. 75(5): p. 855-62.
3. Reinhart, B.J., et al., The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 2000. 403(6772): p. 901-6.
4. Pasquinelli, A.E., et al., Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature, 2000. 408(6808): p. 86-9.
5. Lagos-Quintana, M., et al., Identification of tissue-specific microRNAs from mouse. Curr Biol, 2002. 12(9): p. 735-9.
6. Lagos-Quintana, M., et al., Identification of novel genes coding for small expressed RNAs. Science, 2001. 294(5543): p. 853-8.
7. Lau, N.C., et al., An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science, 2001. 294(5543): p. 858-62.
8. Lee, R.C. and V. Ambros, An extensive class of small RNAs in Caenorhabditis elegans. Science, 2001. 294(5543): p. 862-4.
9. Mourelatos, Z., et al., miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev, 2002. 16(6): p. 720-8.
10. Reinhart, B.J., et al., MicroRNAs in plants. Genes Dev, 2002. 16(13): p. 1616-26.
11. Houbaviy, H.B., M.F. Murray, and P.A. Sharp, Embryonic stem cell-specific MicroRNAs. Dev Cell, 2003. 5(2): p. 351-8.
12. Lim, L.P., et al., The microRNAs of Caenorhabditis elegans. Genes Dev, 2003. 17(8): p. 991-1008.
13. Esquela-Kerscher, A. and F.J. Slack, Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer, 2006. 6(4): p. 259-69.
14. Lee, Y., et al., MicroRNA maturation: stepwise processing and subcellular localization. Embo J, 2002. 21(17): p. 4663-70.
15. Lee, Y., et al., The nuclear RNase III Drosha initiates microRNA processing. Nature, 2003. 425(6956): p. 415-9.
16. Gregory, R.I., et al., The Microprocessor complex mediates the genesis of microRNAs. Nature, 2004. 432(7014): p. 235-40.
17. Lee, Y.S., et al., Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell, 2004. 117(1): p. 69-81.
18. Bohnsack, M.T., K. Czaplinski, and D. Gorlich, Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. Rna, 2004. 10(2): p. 185-91.
19. Lund, E., et al., Nuclear export of microRNA precursors. Science, 2004. 303(5654): p. 95-8.
20. Ketting, R.F., et al., Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev, 2001. 15(20): p. 2654-9.
21. Hutvagner, G., et al., A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science, 2001. 293(5531): p. 834-8.
22. Abrahante, J.E., et al., The Caenorhabditis elegans hunchback-like gene lin-57/hbl-1 controls developmental time and is regulated by microRNAs. Dev Cell, 2003. 4(5): p. 625-37.
23. Brennecke, J., et al., bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell, 2003. 113(1): p. 25-36.
24. Pillai, R.S., et al., Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science, 2005. 309(5740): p. 1573-6.
25. Palatnik, J.F., et al., Control of leaf morphogenesis by microRNAs. Nature, 2003. 425(6955): p. 257-63.
26. Tang, G., et al., A biochemical framework for RNA silencing in plants. Genes Dev, 2003. 17(1): p. 49-63.
27. Yekta, S., I.H. Shih, and D.P. Bartel, MicroRNA-directed cleavage of HOXB8 mRNA. Science, 2004. 304(5670): p. 594-6.
28. Fire, A., et al., Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998. 391(6669): p. 806-11.
29. Ambros, V., et al., A uniform system for microRNA annotation. Rna, 2003. 9(3): p. 277-9.
30. Chen, C.Z., et al., MicroRNAs modulate hematopoietic lineage differentiation. Science, 2004. 303(5654): p. 83-6.
31. Chen, C.Z. and H.F. Lodish, MicroRNAs as regulators of mammalian hematopoiesis. Semin Immunol, 2005. 17(2): p. 155-65.
32. Ramkissoon, S.H., et al., Hematopoietic-specific microRNA expression in human cells. Leuk Res, 2006. 30(5): p. 643-7.
33. Naguibneva, I., et al., The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Nat Cell Biol, 2006. 8(3): p. 278-84.
34. Johnnidis, J.B., et al., Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature, 2008. 451(7182): p. 1125-9.
35. Chen, C.-P., Huang, H.-C., Chen, H.-W., Juan, H.-F., Identification of differenciation related gene networks and micrornas in ATRA- and AM80-treated human HL-60 leukemia cells, in master thesis. 2007.
36. Scientists show microRNA development role. News Headlines Emerging targets, 04/07/2005.
37. C. elegans microRNAs. 2005.
38. Chang, S., et al., MicroRNAs act sequentially and asymmetrically to control chemosensory laterality in the nematode. Nature, 2004. 430(7001): p. 785-9.
39. Giraldez, A.J., et al., MicroRNAs regulate brain morphogenesis in zebrafish. Science, 2005. 308(5723): p. 833-8.
40. Hornstein, E., et al., The microRNA miR-196 acts upstream of Hoxb8 and Shh in limb development. Nature, 2005. 438(7068): p. 671-4.
41. Sayed, D., et al., MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ Res, 2007. 100(3): p. 416-24.
42. Calin, G.A., et al., Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A, 2004. 101(9): p. 2999-3004.
43. Lee, Y.S. and A. Dutta, MicroRNAs: small but potent oncogenes or tumor suppressors. Curr Opin Investig Drugs, 2006. 7(6): p. 560-4.
44. Zhang, B., et al., microRNAs as oncogenes and tumor suppressors. Dev Biol, 2007. 302(1): p. 1-12.
45. Cho, W.C., OncomiRs: the discovery and progress of microRNAs in cancers. Mol Cancer, 2007. 6: p. 60.
46. Negrini, M. and G.A. Calin, Breast cancer metastasis: a microRNA story. Breast Cancer Res, 2008. 10(2): p. 203.
47. Huang, Q., et al., The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol, 2008. 10(2): p. 202-10.
48. Brennecke, J., et al., Principles of microRNA-target recognition. PLoS Biol, 2005. 3(3): p. e85.
49. Krek, A., et al., Combinatorial microRNA target predictions. Nat Genet, 2005. 37(5): p. 495-500.
50. Lim, L.P., et al., Vertebrate microRNA genes. Science, 2003. 299(5612): p. 1540.
51. Rajewsky, N., microRNA target predictions in animals. Nat Genet, 2006. 38 Suppl: p. S8-13.
52. Lewis, B.P., et al., Prediction of mammalian microRNA targets. Cell, 2003. 115(7): p. 787-98.
53. Rehmsmeier, M., et al., Fast and effective prediction of microRNA/target duplexes. Rna, 2004. 10(10): p. 1507-17.
54. Kiriakidou, M., et al., A combined computational-experimental approach predicts human microRNA targets. Genes Dev, 2004. 18(10): p. 1165-78.
55. Enright, A.J., et al., MicroRNA targets in Drosophila. Genome Biol, 2003. 5(1): p. R1.
56. John, B., et al., Human MicroRNA targets. PLoS Biol, 2004. 2(11): p. e363.
57. Grun, D., et al., microRNA target predictions across seven Drosophila species and comparison to mammalian targets. PLoS Comput Biol, 2005. 1(1): p. e13.
58. Cora, D., et al., Identification of candidate regulatory sequences in mammalian 3' UTRs by statistical analysis of oligonucleotide distributions. BMC Bioinformatics, 2007. 8: p. 174.
59. Stark, A., et al., Identification of Drosophila MicroRNA targets. PLoS Biol, 2003. 1(3): p. E60.
60. Mocellin, S., et al., Quantitative real-time PCR: a powerful ally in cancer research. Trends Mol Med, 2003. 9(5): p. 189-95.
61. Chen, C., et al., Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res, 2005. 33(20): p. e179.
62. Gaidatzis, D., et al., Inference of miRNA targets using evolutionary conservation and pathway analysis. BMC Bioinformatics, 2007. 8: p. 69.
63. Ohler, U., et al., Patterns of flanking sequence conservation and a characteristic upstream motif for microRNA gene identification. Rna, 2004. 10(9): p. 1309-22.
64. Krüger J, R.M., RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res, 2006. Jul 1;34(Web Server issue):W451-4.
65. Higgins DG, T.J., Gibson TJ., Using CLUSTAL for multiple sequence alignments. Methods Enzymol., 1996. 266: p. 383-402.
66. Cheng, A.M., et al., Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res, 2005. 33(4): p. 1290-7.
67. Asangani, I.A., et al., MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene, 2008. 27(15): p. 2128-36.
68. Gramantieri, L., et al., Cyclin G1 is a target of miR-122a, a microRNA frequently down-regulated in human hepatocellular carcinoma. Cancer Res, 2007. 67(13): p. 6092-9.
69. Clancy, J.L., et al., Methods to analyze microRNA-mediated control of mRNA translation. Methods Enzymol, 2007. 431: p. 83-111.
70. Beuvink, I., et al., A novel microarray approach reveals new tissue-specific signatures of known and predicted mammalian microRNAs. Nucleic Acids Res, 2007. 35(7): p. e52.
71. Sood, P., et al., Cell-type-specific signatures of microRNAs on target mRNA expression. Proc Natl Acad Sci U S A, 2006. 103(8): p. 2746-51.
72. Omori, Y., et al., CREB-H: a novel mammalian transcription factor belonging to the CREB/ATF family and functioning via the box-B element with a liver-specific expression. Nucleic Acids Res, 2001. 29(10): p. 2154-62.
73. Zhang, K., et al., Endoplasmic reticulum stress activates cleavage of CREBH to induce a systemic inflammatory response. Cell, 2006. 124(3): p. 587-99.
74. Chin, K.T., et al., The liver-enriched transcription factor CREB-H is a growth suppressor protein underexpressed in hepatocellular carcinoma. Nucleic Acids Res, 2005. 33(6): p. 1859-73.
75. Peri, A., et al., Expression of cAMP-responsive element binding protein and inducible cAMP early repressor in hyperfunctioning thyroid adenomas. Eur J Endocrinol, 2002. 146(6): p. 759-66.
76. Hendrix, N.D., et al., Fibroblast growth factor 9 has oncogenic activity and is a downstream target of Wnt signaling in ovarian endometrioid adenocarcinomas. Cancer Res, 2006. 66(3): p. 1354-62.
77. Penault-Llorca, F., et al., Expression of FGF and FGF receptor genes in human breast cancer. Int J Cancer, 1995. 61(2): p. 170-6.
78. Jin, C., et al., Directionally specific paracrine communication mediated by epithelial FGF9 to stromal FGFR3 in two-compartment premalignant prostate tumors. Cancer Res, 2004. 64(13): p. 4555-62.
79. Klein, R.D., et al., Promatrilysin expression is induced by fibroblast growth factors in the prostatic carcinoma cell line LNCaP but not in normal primary prostate epithelial cells. Prostate, 1999. 41(4): p. 215-23.
80. Todo, T., et al., Expression and growth stimulatory effect of fibroblast growth factor 9 in human brain tumors. Neurosurgery, 1998. 43(2): p. 337-46.
81. Colognato, H. and P.D. Yurchenco, Form and function: the laminin family of heterotrimers. Dev Dyn, 2000. 218(2): p. 213-34.
82. Gerecke, D.R., et al., The complete primary structure for a novel laminin chain, the laminin B1k chain. J Biol Chem, 1994. 269(15): p. 11073-80.
83. Ryan, M.C., et al., Cloning of the LamA3 gene encoding the alpha 3 chain of the adhesive ligand epiligrin. Expression in wound repair. J Biol Chem, 1994. 269(36): p. 22779-87.
84. Vailly, J., et al., The 100-kDa chain of nicein/kalinin is a laminin B2 chain variant. Eur J Biochem, 1994. 219(1-2): p. 209-18.
85. Timpl, R. and J.C. Brown, The laminins. Matrix Biol, 1994. 14(4): p. 275-81.
86. Katayama, H., et al., Activation of focal adhesion kinase in detached human epidermal cancer cells and their long-term survival might be associated with cell surface expression of laminin-5. Acta Derm Venereol, 2008. 88(2): p. 100-7.
87. Carpenter, P.M., et al., Laminin 5 expression in metaplastic breast carcinomas. Am J Surg Pathol, 2008. 32(3): p. 345-53.
88. Manda, R., et al., Differential expression of the LAMB3 and LAMC2 genes between small cell and non-small cell lung carcinomas. Biochem Biophys Res Commun, 2000. 275(2): p. 440-5.
89. Bergamini, C., et al., Laminin-5 stimulates hepatocellular carcinoma growth through a different function of alpha6beta4 and alpha3beta1 integrins. Hepatology, 2007. 46(6): p. 1801-9.
90. Spessotto, P., et al., Laminin-332 (Laminin-5) is the major motility ligand for B cell chronic lymphocytic leukemia. Matrix Biol, 2007. 26(6): p. 473-84.
91. Calaluce, R., et al., Human laminin-5 and laminin-10 mediated gene expression of prostate carcinoma cells. Prostate, 2006. 66(13): p. 1381-90.
92. Kita, Y., et al., Clinical significance of LAMB3 and COL7A1 mRNA in esophageal squamous cell carcinoma. Eur J Surg Oncol, 2008.
93. Martinez, I., et al., Human papillomavirus type 16 reduces the expression of microRNA-218 in cervical carcinoma cells. Oncogene, 2008. 27(18): p. 2575-82.
94. Shivdasani, R.A., MicroRNAs: regulators of gene expression and cell differentiation. Blood, 2006. 108(12): p. 3646-53.
95. Chan, J.A., A.M. Krichevsky, and K.S. Kosik, MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res, 2005. 65(14): p. 6029-33.
96. Ciafre, S.A., et al., Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun, 2005. 334(4): p. 1351-8.
97. Iorio, M.V., et al., MicroRNA gene expression deregulation in human breast cancer. Cancer Res, 2005. 65(16): p. 7065-70.
98. Cimmino, A., et al., miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A, 2005. 102(39): p. 13944-9.
99. Calin, G.A., et al., Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A, 2002. 99(24): p. 15524-9.
100. Akao, Y., Y. Nakagawa, and T. Naoe, MicroRNA-143 and -145 in colon cancer. DNA Cell Biol, 2007. 26(5): p. 311-20.
101. Michael, M.Z., et al., Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res, 2003. 1(12): p. 882-91.
102. Murakami, Y., et al., Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene, 2006. 25(17): p. 2537-45.
103. Takamizawa, J., et al., Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res, 2004. 64(11): p. 3753-6.
104. Johnson, S.M., et al., RAS is regulated by the let-7 microRNA family. Cell, 2005. 120(5): p. 635-47.
105. Hayashita, Y., et al., A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res, 2005. 65(21): p. 9628-32.
106. O'Donnell, K.A., et al., c-Myc-regulated microRNAs modulate E2F1 expression. Nature, 2005. 435(7043): p. 839-43.
107. He, H., et al., The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci U S A, 2005. 102(52): p. 19075-80.
108. Voorhoeve, P.M., et al., A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell, 2006. 124(6): p. 1169-81.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37890-
dc.description.abstract微型核醣核酸microRNA (miRNA) 是一群非常短的RNA,大約只有二十幾個鹼基,但卻具有影響基因表現的能力或蛋白質的生合成。miRNA與siRNA在生化機制及功能是相當類似的。很多證據指出miRNA能調控大多能轉錄出蛋白質的基因,因此,miRNA對於許多的細胞生理功能都扮演重大的調控,包括發育、細胞的增生與分化、細胞凋亡或癌症的生成與發展。近年來,約有五百多個miRNA基因被預測或透過實驗方式所驗證出來。由於目前推論出約大於一千多個miRNA基因存在人類基因組當中,而如何去發現或證實新的miRNA基因更是研究上的一大課題。李文雄院士以及施純傑博士的研究團隊發展透過組織作篩選的電腦分析的方式來預測新的miRNA基因及其調控的下游基因,因此我們能藉由實驗的方法在三種細胞株中作細胞驗證,分別是MCF-7乳癌細胞株、MCF-10A正常乳腺細胞、IMR-90肺部正常纖維母細胞,我們確認其中六種新的miRNAs存在於此三種細胞中,並進一步挑選其中兩種miRNA來作功能性及演化保留性分析,並利用冷光酶測定分析以及西方墨點法來驗證此新 miRNA的確存在並可以調控其下游基因的表現。zh_TW
dc.description.abstractMicroRNAs are endogenous RNAs of 20-23 nucleotides in length that negatively regulate the expression of target genes by binding to the 3’-untranslated regions (UTRs) of the target mRNAs. The importance of miRNAs in animals is highlighted by the facts that they regulate a large proportion of protein-coding genes, and are involved in the control of a variety of processes including development, cell proliferation, tissue differentiation, apoptosis and metabolism. In addition, microRNAs are shown to be directly involved in cancer initiation and progression. Recent studies suggest that up to one third of human genes are regulated by miRNAs. However, although many human miRNA genes have been identified or predicted, it is believed that many more remain to be discovered. In this work, we identified the existence and measured the endogenous expression levels of novel miRNAs predicted by Dr. Wen-Hsiung Li and Dr. Arthur Chun-Chieh Shih; furthermore, we identified their target gene in different kinds of cell lines such as human breast cancer cell line MCF-7, non-tumorigenic MCF-10A and human lung fibroblasts IMR-90. In addition, we analyzed and verified the functions of the novel miRNAs using their mimics and inhibitors by luciferase reporter assay system and western blotting.en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:49:27Z (GMT). No. of bitstreams: 1
ntu-96-R95b43003-1.pdf: 7462212 bytes, checksum: c5f542d2d41551a88e2fa36f613bf2ec (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents學位論文口試委員會審定書 II
誌謝 III
中文摘要 V
Abstract VI
縮寫表 VII
第一章 前言 1
1-1 miRNAs的介紹 1
1-2 miRNA 與siRNA 的差異 2
1-3 miRNAs對於細胞的影響 3
1-4 miRNAs及其標靶基因的預測 4
1-5研究目標 4
第二章 實驗材料與方法 6
2-1 細胞培養 6
2-2 細胞總核糖核酸(含微型核糖核酸)萃取 10
2-3反轉錄反應 (Reverse Transcription) 11
2-3-1 miRNAs表現使用 11
2-3-2基因表現使用 12
2-4、即時定量聚合酶鏈鎖反應 (Real-Time PCR) 13
2-5 聚合酶連鎖反應 (Polymerase Chain Reaction, PCR) 15
2-6 膠體電泳(DNA Gel Electrophrosis) 16
2-6-1洋菜膠體製備 16
2-6-2聚丙烯醯胺膠體製備 17
2-6-3膠體電泳分析 18
2-6-4膠體回收 18
2-7 小量質體萃取 (Plasmid Extraction) 20
2-8 TA cloning 21
2-9 菌落PCR 篩選 (Colony PCR Screening) 22
2-10 pMIR-REPORT-LAMB3 3’-UTR expression vector質體構築 24
2-11 pMIR-REPORT-P-2 target sequence expression vector質體構築 26
2-12 冷光酶活性測定分析 (Luciferase Reporter Assay) 28
2-12-1 miRNAs轉殖與報告基因載體轉殖 28
2-12-2 Luciferase與β-galactosidase訊號偵測 29
2-13 西方墨點法 (Westen Blotting) 30
2-13-1 SDS聚丙烯醯胺膠體製備 30
2-13-2 SDS聚丙烯醯胺膠體電泳分析 31
2-13-3 膠體電泳轉漬 32
2-13-4 抗體作用呈色分析 33
第三章 結果 34
3.1 利用PCR、電泳及cloning方式確認細胞中的確具有小片段RNA序列 34
3-2 新miRNAs及其調控之標靶基因在物種演化上具有序列保留性 35
3-3 利用real-time PCR來驗證miRNA及其標靶基因在轉殖後的基因表現量 36
3-4 利用冷光酶活性測定分析驗證新 miRNA-P-2 和 P-47-5p 能分別調控至其標靶基因 CREB3L3 和 LAMB3 37
3-4-1 miRNA-P-2與其標靶基因 CREB3L3 37
3-4-2 miRNA-P-47-5p與其標靶基因 LAMB3 38
3-5 利用西方墨點法來分析miRNA及其標靶基因的蛋白質產物表現量 39
第四章 討論 40
第五章 未來展望 42
圖與表 43
參考文獻 71
附錄 78
dc.language.isozh-TW
dc.subject冷光&#37238zh_TW
dc.subject微型核醣核酸zh_TW
dc.subject調控基因zh_TW
dc.subject組織篩選zh_TW
dc.subject活性分析zh_TW
dc.subjecttarget geneen
dc.subjectluciferase assayen
dc.subjecttissue-selectiveen
dc.subjectmicroRNAen
dc.title鑑定人類新微型核醣核酸及其調控基因zh_TW
dc.titleIdentification of Human Novel microRNAs and Their Targetsen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李文雄(Wen-Hsiung Li),施純傑(Arthur Chun-Chieh Shih),黃宣誠(Hsuan-Cheng Huang)
dc.subject.keyword微型核醣核酸,調控基因,組織篩選,冷光&#37238,活性分析,zh_TW
dc.subject.keywordmicroRNA,target gene,tissue-selective,luciferase assay,en
dc.relation.page97
dc.rights.note有償授權
dc.date.accepted2008-06-27
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
7.29 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved