Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 管理學院企業管理專班(Global MBA)
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37881
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor游張松
dc.contributor.authorHsiao-Mei Huangen
dc.contributor.author黃筱梅zh_TW
dc.date.accessioned2021-06-13T15:48:56Z-
dc.date.available2009-07-03
dc.date.copyright2008-07-03
dc.date.issued2008
dc.date.submitted2008-06-27
dc.identifier.citation1. A Generalized Quantity Discount Pricing Model to Increase Supplier’s Profits, Hau L. Lee, Mier J. Rosenblatt, Management Science, Sep. 1986.
2. A Quantity Discount Pricing Model to Increase Vendor Profits, James P. Monahan, Management Science, Jun 1984.
3. A Personalized System for Conversational Recommendations, Cynthia A. Thompson, Mehmet H. Göker, Pat Langley, master thesis of Carnegie Mellon University School of Computer Science, 2004.
4. Bundling and Competition on the Internet, Yannis Bakos and Erik Brynjolfsson, Marketing Science, Vol. 19, No. 1, Winter 2000.
5. Bundling Information Goods: Pricing, Profits and Efficiency, Yannis Bakos and Erik Brynjolfsson, draft version, Dec., 1996.
6. Consumers on the Web: A Study of Pre-Purchase Search, Charlotte Grace Greig, PHD thesis of Business Administration Program, Golden Gate University, 2003.
7. Explorer’s guide to the semantic web, Thomas B. Passin, Manning Publications Co, 2004.
8. Experiential Marketing, Schmitt, Bernd H., Journal of Marketing Management, 15, Issue 1-3, p53-67, 1999.
9. Mixed Bundling in Duopoly, Nicholas Economides, Stern School of University, 1993.
10. Mining skewed and sparse transaction data for personalized shopping recommendation, Chun-Nan Hsu, Hao-Hsiang Chung, Kluwer Academic Publishers, 2004.
11. Modern Data Warehousing, mining, and visualization --- core Concepts, George M. Marakas, Prentice Hall, 2002.
12. Official website of Ruby on Rails, http://api.rubyonrails.org/ .
13. Personalized Content Recommendation and User Satisfaction: Theoretical Synthesis and Empirical Findings, Ting-Peng Liang, Hung-Jen Lai, Yi-Cheng Ku, Journal of Management Information Systems, Winter 2006-7, Vol. 23, No. 3, pp. 45 – 70, 2006.
14. Quantity Discounts: Managerial Issues and Research Opportunities, Robert J. Dolan, Marketing Science, winter 1987.
15. Quantity Discount Under Demand Uncertainty, Nihat Altintas, Feryal Erhun, Sridhar Tayur, accepted by Management Science, 2007.
16. Rolling with Ruby on Rails Revisited, Bill Walton and Curt Hibbs, 14 Dec., Official website of O’Reilly, 2006.
17. Testing the Surf: Criteria for Evaluating Internet Information Resources, Smith, Alastair G., The Public-Access Computer Systems Review 8, no. 3, 1997.
18. Website of SearchEnterpriseLinux.com, http://searchenterpriselinux.techtarget.com.
19. Website of DBMarketing, http://www.dbmarketing.com
20. Web Engineering, Gerti Kappel, Birgi Proll, Siegfried Reich, and Werner Retschitzegger, John Wiley & Sons, Ltd., 2006.
21. 謝光萍,數位時代雙週刊,第151期,2007/04/03。
22. Press Release, 艾思網絡股份有限公司, 2004/04/18
23. 成立11年 FG靠網友坐大,郭家崴,http://www.infotimes.com.tw, Sep. 17, 2007.
24. 交友網站社群經營模式之研究,紀姿吟,中原大學資訊管理研究所碩士論文,2004。
25. 從虛擬社群觀點探討女性網站之經營模式--以i-Village為例,王鈿,國立台灣大學商學研究所碩士論文,2000。
26. 虛擬社群經營模式之探討---以優仕網為例,洪嘉培,袁心枚,南華大學傳播管理研究所,2001。
27. 保養品消費者購買行為之研究,王昭正,國立台灣大學國際企業學研究所碩士論文,2005。
28. 心理與社會性變數對女性化妝品購買及使用行為之影響,陳麗秋,台大商研所碩士論文,1989。
29. 女性在網路上購買化妝保養品之行為研究, 何明純, 南華大學傳播管理學系碩士論文, 2003。
30. 化妝保養品產業之現況分析及未來創新商業模式之研究,賴惠敏,國立台灣大學管理學院高階公共管理組碩士論文,2006。
31. 促銷評價、品牌知識與品牌忠誠度之關聯性探討-以A廠商美髮商品為例,黃義俊,黃慶源,吳俊彥,2006創新、整合與應用研討會,2006。
32. 女性消費心理面面觀,周宇寬,台北市,國家,初版,1992。
33. 新竹市女性消費者對化妝品之消費行為研究,沈鴻禧,劉建明,黃瑜君,研究報告。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37881-
dc.description.abstract因為網路的普及及方便性,網路交易或是資訊搜尋的重要性正不斷的提昇,甚至超越過傳統商店。其中以女性消費者網路購物成長速度最驚人。因此,本研究聚焦於網路上的化妝品公司創新經營模式。
整個模式架構於網路虛擬商店、實體商店及直銷三種銷售平台之上。透過這三種平台的結合,擷取各種平台的優點,包含網路的便利、無時間及資料量的限制,以及實體商店展示及體驗商品之環境,以及直銷提供一對一的專人銷售方式。以網路平台為主,實體及直銷方式為輔,提供使用者多元的選擇方式。
整個平台以知識分享為基礎,提供使用者心得分享,達人、廠商、專家及醫生之知識傳授,並搭配互動式的i-magazine呈現於網路平台。並於網路平台透過團購的方式,提供消費者低價之商品。團購進行方式為網站之產品經理設計團購之商品內容及階梯式價格區段,使用者可自行決定購買之價格及數量,當目標數量到達時,以此價格或高於此價格為目標價的使用者,即可成交。此概念仿照買進股票之成交模式進行,也就是只有小於或等於使用者的目標價時,才會成交。透過這種方式凝聚消費者力量,以提高與供應商議價的能力。
有鑒於21世紀為一資訊爆炸之年代,並且化妝品為一因人而異的商品,因此提供個人化商品推薦以減少使用者的搜尋成本。使用者透過這些推薦商品,可快速連結至其相關資訊及知識學習平台,甚至參予此商品的團購活動。所謂的個人化商品推薦,顧名思義就是每個使用者會有不同的推薦商品,此推薦將依據使用者於網路上的使用習性、消費習慣、以及化妝品的相關統計或問卷資料,透過資料採礦技術得到每個人獨特的推薦商品清單。同樣的,這份推薦商品亦為供應商了解市場需求的重要來源。透過這個平台,針對消費者真正的需求提供服務,一方面將對消費者有所貢獻,同時,將能夠迅速提昇公司的利潤。
zh_TW
dc.description.abstractBecause of the growth in Internet business and female consumers, we planed to start out business on the Internet with focusing on female consumer. That’s why we decided to run an online cosmetic business.
We provided multiple choices with the combination of virtual store, physical store, and direct sale to the consumer. Retrieve the advantages of each distribution channel, including the convenient and popularity of the Internet, experiencing the product through the physical store, and the one-to-one service of direct sale.
The model was based on the knowledge sharing which were provided by the consumer, expert, opinion leader, supplier, and the doctor. We extracted the information and knowledge to become the i-magazine with interactive layout. Furthermore, we created the group volume discount (GVD) to attract the users to increase the total expenditure of the cosmetics, thereby we can have the bigger bargaining power when negotiated the prices with the suppliers. The product designer chose the products and decided the price levels for GVD. Consumer decided the purchase quantity for specific price level. When the quantity of the specific price level was met, the consumer who applied for that price level or the higher one can complete the transaction with the price.
Searching for and making decisions about information is becoming increasingly difficult as the amount of information and number of choices increases. Recommendation system can help users find items of interest, especially for the cosmetics that is highly different from person to person. Therefore, we recorded the user’s shopping pattern, online behavior, and the preference, and extracted the user profile with the data mining technology. After matching the user profile and the product profile, we provided the personal recommendation which was unique for each user to access to the GVD and information of the products that meet their needs. On the other hand, this recommendation was also an important data for the suppliers to understand the needs and wants of the consumer. Through this model, we can attract more users to buy the product with lower price and increase our revenue.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:48:56Z (GMT). No. of bitstreams: 1
ntu-97-R95749028-1.pdf: 1032273 bytes, checksum: 86af9ce11f9dbff2d4213d6672ad808f (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents摘要 1
Abstract 3
Table of Contents 5
List of Figures 7
List of Tables 8
1. Introduction 1
1.1 Research Background 1
1.2 Motivations and Objectives 2
1.3 Research Structure 4
2. Literature Review 5
2.1 Trend of Internet 5
2.2 Female Online Shopping Analysis 10
2.3 Experiential Marketing 11
3. Cosmetics Industry Analysis 14
3.1 Industry Current Situation 14
3.2 Trends of the Industry 17
3.3 Demographics of the Female Cosmetics Shoppers on the Internet 20
3.4 Distribution Channel of Cosmetics Industry 21
4. Competitor Analysis 26
4.1 FashionGuide 26
4.1.1 Background 26
4.1.2 Attraction 27
4.1.3 Content 28
4.1.4 Revenue Model 30
4.1.5 Business Model 31
4.2 UrCosme 32
4.2.1 Background 32
4.2.2 Attraction 33
4.2.3 Content 34
4.2.4 Revenue Model 35
4.2.5 Business Model 35
4.3 104Beauty 37
4.3.1 Background 37
4.3.2 Attraction 37
4.3.3 Content 38
4.3.4 Revenue Model 38
4.3.5 Business Model 39
5. Business Model for Online Cosmetics 41
5.1 Value Proposition 41
5.1.1 The Overall Value Proposition 41
5.1.2 Value for Suppliers and Consumers 42
5.2 Business Model 43
5.3 Provide Reliable Shared Information 47
5.4 GVD ………………………………………………………………………….50
5.4.1 GVD Patterns in Taiwan 51
5.4.2 Basic Assumption of GVD 52
5.4.3 Pricing Strategies 55
5.4.4 Strategies of GVD 58
5.4.5 Procedure of GVD 59
5.5 Personal Recommendation 66
5.5.1 Importance of Personal Recommendation 66
5.5.2 User’s Budget on the Cosmetics 68
5.5.3 Mining the Interesting Products for Individual 71
5.5.4 Generate the Personal Recommendation 77
5.5.5 Feedback to the Supplier 79
5.6 Online Services 81
5.6.1 Architecture of Online Services 83
6. Conclusion 89
7. Reference 90
dc.language.isoen
dc.subject資料採礦zh_TW
dc.subject化妝品zh_TW
dc.subject團購zh_TW
dc.subject個人化商品推薦zh_TW
dc.subject資料分享zh_TW
dc.subjectCosmeticsen
dc.subjectdata miningen
dc.subjectpersonal recommendationen
dc.subjectgroup volume discounten
dc.subjectinformation sharingen
dc.title線上化妝品之GVD創新經營模式zh_TW
dc.titleAn Innovative Business Model for Online Cosmetics:
A Group Volume Discount (GVD)-Based Approach
en
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張銀益,張舜德,洪鉛財
dc.subject.keyword化妝品,團購,個人化商品推薦,資料分享,資料採礦,zh_TW
dc.subject.keywordCosmetics,information sharing,group volume discount,personal recommendation,data mining,en
dc.relation.page93
dc.rights.note有償授權
dc.date.accepted2008-06-27
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept企業管理碩士專班zh_TW
顯示於系所單位:管理學院企業管理專班(Global MBA)

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
1.01 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved