Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37841
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳明新(Min-Shin Chen),顏家鈺(Jia-Yush Yen)
dc.contributor.authorYu-Wei Wuen
dc.contributor.author吳昱緯zh_TW
dc.date.accessioned2021-06-13T15:46:46Z-
dc.date.available2008-07-07
dc.date.copyright2008-07-07
dc.date.issued2008
dc.date.submitted2008-06-30
dc.identifier.citation[1] B. J. Lin, “The ending of optical lithography and the prospects of its successors”, Microelectronic Engineering, 83, 604-613, 2006.
[2] B. J. Lin, “Optical lithography—present and future challenges”, Comptes Rendus Physique, 7, 858-874, 2006.
[3] P. Rai-Choudhury, Handbook of Microlithography, Micromachining, and Microfabrication. Volume 1: Microlithography. SPIE Publications, 1997.
[4] J. Goldstein, D. Newbury, D. Joy, C. Lyman, P. Echlin, E. Lifshin, L. Sawyer, L. Michael, Scanning electron microscopy and x-ray microanalysis 3th ed. New York : Springer Science+Business Media, c2003.
[5] C. A. Spindt, I. Brodie, L. Humphrey, E. R. Westerberg, “Physical properties of thin-film field emission cathodes with molybdenum cones”, Journal of Applied Physics, 47, no. 12, 5248-5263, 1976.
[6] N.S. Xua, S. Ejaz Huq, “Novel cold cathode materials and applications”, Materials Science and Engineering: R: Reports, 48, 47-189, 2005.
[7] M. Ding, “Field Emission from Silicon”, Ph.D thesis, Department of Physics, Massachusetts Institute of Technology, 2001.
[8] S. S. Choi , S. H. Lim, D. W. Kim, M. Y. Jung, H. Jeon, “Fabrication of gated nanosize Si-tip arrays for high perveance electron beam applications”, Journal of Vacuum Science Technology B, 17, 583-587, 1999.
[9] M. A. R. Alves, D. F. Takeuti, E. S. Braga, “Fabrication of sharp silicon tips employing anisotropic wet etching and reactive ion etching”, Microelectronics Journal, 36, 51-54, 2005.
[10] L. Chen, “Experimental study of ultra-sharp silicon nano-tips”, Solid State Communications, 143, 553-557, 2007.
[11] N. E. McGmer, K. Warner, P. Singhal, J. J. Gu, C. Chan, “ Oxidation-Sharpened Gated Field Emitter Array Process”, IEEE Transactions on Electron Devices, 38, no. 10, 2389-2391, 1991.
[12] M. A. R. Alves, P. H. L. de Faria, E.S. Braga, “Current–voltage characterization and temporal stability of the emission current of silicon tip arrays”, Microelectronic Engineering, 75, 383-388, 2004.
[13] http://www.pulsedpower.net/Info/WorkFunctions.htm
[14] D. J. Griffiths, Introduction to electrodynamics 3th ed. Upper Saddle River, New Jersey: Prentice Hall, c1999.
[15] R. Stratton, “Field Emission from Semiconductors”, Proceeding of the Physical Society. Section B, 68, 746-757, 1955.
[16] R. Gomer, Field emission and field ionization. New York: American Institute of Physics, c1993.
[17] M. J. Madou, Fundamentals of microfabrication: the science of miniaturization. Boca Raton, Florida: CRC Press, c2002.
[18] R. Knizikevičius, “Simulation of anisotropic etching of silicon in SF6 +O2 plasma”, Sensors and Actuators A, 132, 726-729, 2006.
[19] G. S. Oehrlein, J. G. Clabes, P. Spirito, “Investigation of Reactive-Ion-Etching-Related Fluorocarbon Film Deposition onto Silicon and a New Method for Surface Residue Removal”, Journal of The Electrochemical Society, 133, 1002-1008, 1986.
[20] H. Abe, M. Yoneda, N. Fujiwara, “Developments of Plasma Etching Technology for Fabricating Semiconductor Devices”, Japanese Journal of Applied Physics, 47, 1435-1455, 2008.
[21] C. Iliescu, F. E. H. Tay, J. Miao, “Strategies in deep wet etching of Pyrex glass”, Sensors and Actuators A, 133, 395-400, 2007.
[22] C. Iliescua, J. Miaob, F. E. H. Tay, “Optimization of an amorphous silicon mask PECVD process for deep wet etching of Pyrex glass”, Surface & Coatings Technology, 192, 43-47, 2005.
[23] D. C. S. Bien, P. V. Rainey, S. J. N. Mitchell, H. S. Gamble, “Characterization of masking materials for deep glass micromachining”, Journal of Micromechanics and Microengineering, 13, S34-S40, 2003.
[24] K. Sato, M. Shikida, Y. Matsushima, T. Yamashiro, K. Asaumi, Y. Iriye, M. Yamamoto, “Characterization of orientation-dependent etching properties of single-crystal silicon: effects of KOH concentration”, Sensors and Actuators A, 64, 87-93, 1998.
[25] “Wet-Chemical Etching and Cleaning of Silicon”, Virginia Semiconductor, inc., January 2003.
[26] A. A. Ayón, R. Braff, C. C. Lin, H. H. Sawin, M. A. Schmidt, ”Characterization of a Time Multiplexed Inductively Coupled Plasma Etcher”, Journal of The Electrochemical Society, 146, 339-349, 1999.
[27] A. A. Ayón, R. A. Braff, R. Bayt, H. H. Sawin, M. A. Schmidt, “Influence of Coil Power on the Etching Characteristics in a High Density Plasma Etcher”, Journal of The Electrochemical Society, 146, 2730-2736, 1999.
[28] L. Dvorson, M. Ding, A. I. Akinwande, “Analytical Electrostatic Model of Silicon Conical Field Emitters—Part I”, IEEE Transactions on Electron Devices, 48, 2001.
[29] A. Beiser, Concepts of Modern Physics 6th ed. Boston: McGraw-Hill, 2003.
[30] S. C. Miller, R. H. Good, “A WKB-Type approximation to the Schrödinger Equation”, Physical Review, 91, 174-179, 1953.
[31] Z. H. Huang, T. E. Feuchtwang, P. H. Cutler, E. Kazes, “Wentzel-Kramers-
Brillouin method in multidimentional tunneling”, Physical Review A, 41, 32-41, 1990; M. Lenzlinger, E. H. Snow, “Fowler-Nordheim tunneling into thermally grown SiO2”, Journal of Applied Physics, 40, 278-283, 1969.
[32] R. E. Burgess, H. Kroemer, J. M. Houston, “Corrected values of Fowler- Nordheim field emission function v(y) and s(y)”, Physical Review, 90, 515, 1953.
[33] G. Fursey, I. Brodie, P. Shwoebel, Field emission in vacuum microelectronics. New York: Kluwer Academic/Plenum Publishers, c2005.
[34] W. Zhu, Vacuum Microelectronics. New York: John Wiley & Sons, c2001.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37841-
dc.description.abstract現今的微影製程之最小圖形半間距,在45nm以下且能應用於業界的微影技術仍未有定論。而單一電子束微影技術已有相當的研究基礎,若將其推廣成多電子束平行寫入的方式便能提高產能,極有機會成為下一世代的微影技術。本論文即以微機電製程技術製作產生多電子束的場發射元件,材料選用製作上方便且便宜的矽。
  場發射元件的製作分為矽針陣列、矽針之閘極層、陽極板的製作。矽針的形成機制主要為反應式離子蝕刻等向性蝕刻矽,過蝕刻大致上仍能維持小的針尖半徑,僅對矽針外型與矽針均勻度有較大影響;調整反應式離子蝕刻中壓力的大小以及稀釋氣體與主要氣體的比例,可做出不同高寬比及頂端圓錐角的矽針結構。在矽針之閘極層的部分主要為標準製程的製作,觀察到了在濕蝕刻完成結構時,閘極層產生崩塌的現象,以及提出一個以旋塗光阻來決定閘極孔徑大小的可能製作方法。在陽極板的製作方面,利用舉離製程的技術,設計了可使陰極與陽極導電層維持數個微米尺寸距離之陽極板的微機電製程,理想上可完全阻隔陽極與陰極的漏電,並可改變陽極板的蝕刻凹槽深度,調整陰極與陽極層的距離。
  最後將製作的矽針陣列及陽極板組裝成場發射元件,在約10-5torr的真空度下做初步的場發射實驗,將實驗結果以金屬場發射電流公式分析,得到電場增強因子 、場發射面積 以及場發射起始電場Estart,與他人的場發射實驗比較,大致上為一個合理的數值。
zh_TW
dc.description.abstractCurrently, the lithography which has critical dimension small than 45nm and can be applied to industry is not presented. However, single beam e-beam lithography has been developed for years. If the disadvantage of low throughput can be overcome by extending single beam to multiple beams, it will be the next generation of lithography. This thesis is about MEMS design and fabrication of field emission device as the source of parallel electron beams. Silicon is chosen to be the material of field emission device.
Fabrication of field emission device includes Si tips array, gated Si tips array, and anode plate. First, Si tips array are formed mainly by RIE. The effect of over-etched on the apex of Si tip is not evident. It has mainly effect on the shape and the uniformity of Si tips. The aspect ratio and the cone angle of apex can be modified by varying the pressure and the ratio of flow rate of etching gas and diluted gas. Second, for gated Si tips array, the standard fabrication process of etched-gate Si tips array is performed. The collapse of gate layer is observed. A possible fabrication process defining the gate aperture by PR spin coating is presented. Third, we design a fabrication process utilizing the “lift-off” technique for anode plate. By this anode plate, anode and cathode can be separated at micrometers, and the leakage current can be totally blocked ideally. The distance can be modified by varying the etched depth in the fabrication process.
Finally, experimental field emission device is constituted by the Si tips and the anode plate. The experiment on field emission is performed in a vacuum system with residual gas pressure about 10-5torr. The results are analyzed by theory of field emission from metal to obtain field factor,β, effective emission area,α, and turn-on electric field, Estart. Reasonable data is obtained.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:46:46Z (GMT). No. of bitstreams: 1
ntu-97-R95522822-1.pdf: 11550082 bytes, checksum: cc6b72f77233d54058a9f5bdde9b217d (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents摘要 I
Abstract III
目錄 V
圖目錄 VIII
表目錄 XIV
第1章 簡介 1
1.1 研究背景與動機 1
1.2 電子束微影系統 3
1.3 文獻回顧 4
1.4 本文貢獻與架構 16
第2章 理論基礎 18
2.1 固體之功函數 18
2.2 金屬的場發射理論 20
2.2.1 映像電荷修正位能與等效位能模型 20
2.2.2 電子供給函數與傳輸係數 25
2.2.3 Fowler-Nordheim金屬場發射電流公式 27
2.3 半導體的場發射理論 30
2.3.1 半導體之能帶分佈 30
2.3.2 半導體之映像電荷修正位能與電場滲透效應 31
2.3.3 半導體場發射電流公式 34
2.4 半導體與金屬場發射電流的比較 37
2.5 微機電製程理論 40
2.5.1 反應式離子蝕刻 40
2.5.2 電漿輔助化學氣相沈積 42
2.5.3 舉離製程 43
第3章 場發射元件製作 45
3.1 場發射元件結構 45
3.2 場發射矽針陣列之製作 46
3.2.1 矽針陣列之微機電製作流程 46
3.2.2 光學微影定義光阻圖形及濕蝕刻二氧化矽層 47
3.2.3 以反應式離子蝕刻形成奈米尺寸尖端的矽針陣列 49
3.3 矽針陣列之閘極層製作 53
3.3.1 蝕刻式閘極層之微機電製作流程 53
3.3.2 以電漿輔助化學氣相沈積等向性沈積二氧化矽 54
3.3.3 以電子束蒸鍍閘極金屬與旋塗光阻於金屬層上方 56
3.3.4 乾蝕刻光阻及濕蝕刻金屬與二氧化矽 57
3.4 場發射元件之陽極板製作 59
3.4.1 陽極板之微機電製作流程 60
3.4.2 陽極板之圖形設計 63
3.4.3 陽極板實際製作過程與結果 64
第4章 場發射元件製作結果分析 67
4.1 反應式離子蝕刻形成矽針結構之蝕刻結果分析 67
4.1.1 過蝕刻之結果 67
4.1.2 反應壓力與添加氣體對蝕刻之影響 73
4.1.3 低壓反應式離子蝕刻產生之薄膜物質 82
4.1.4 間斷性蝕刻造成等向性蝕刻速率不足之結果 84
4.2 矽針陣列之閘極製作結果分析 86
4.2.1 旋塗光阻於金屬層上方之結果 86
4.2.2 閘極金屬層之崩塌 88
4.3 陽極板之製作結果分析 89
4.3.1 氫氟酸濕蝕刻派熱克斯玻璃時光阻之阻擋能力 89
4.3.2 玻璃晶圓之二次曝光對準問題 91
4.4 以氫氧化鉀與反應式離子蝕刻製作矽針陣列 94
4.4.1 微機電製作流程與結果 94
4.4.2 氫氧化鉀非等向性蝕刻矽之蝕刻表面粗糙度 96
4.4.3 氫氧化鉀蝕刻後的反應式離子蝕刻 99
4.5 以電感耦合電漿蝕刻製作超高高寬比之矽針 101
4.5.1 微機電製作流程與結果 101
4.5.2 側壁保護層之去除 105
4.6 小線寬之光學微影製程 107
第5章 場發射實驗 109
5.1 場發射實驗架構 109
5.1.1 陽極與陰極之疊合 109
5.1.2 場發射實驗之真空腔體 110
5.1.3 微小電流量測 111
5.2 場發射實驗之結果分析 113
5.2.1 場發射實驗之漏電 113
5.2.2 場發射元件之性能分析 114
第6章 結論與未來展望 120
6.1 結論 120
6.2 未來展望 121
參考文獻 123
附錄A 穿遂效應 127
附錄B 電子供給函數與傳輸係數 131
附錄C 場發射電流公式的簡化 136
附錄D 矽針陣列之製作流程 139
附錄E 矽針陣列之閘極層製作流程 140
附錄F 陽極板之製作流程 141
dc.language.isozh-TW
dc.subject反應式離子蝕刻zh_TW
dc.subject矽場發射陣列zh_TW
dc.subject場發射zh_TW
dc.subject半導體場發射zh_TW
dc.subject多電子束微影zh_TW
dc.subjectreactive ion etchingen
dc.subjectsilicon field emission arrayen
dc.subjectsilicon tips arrayen
dc.subjectfield emissionen
dc.subjectmultiple e-beam lithographyen
dc.title以微機電製程技術製作應用於多電子束微影之場發射元件zh_TW
dc.titleDesign and fabrication of MEMS-based field emission electron emitters for multiple e-beam lithographyen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.advisor-orcid,顏家鈺(jyen@ntu.edu.tw)
dc.contributor.oralexamcommittee陳永耀(Yung-Yaw Chen),蔡坤諭(Kuen-Yu Tsai),盧奕璋(Yi-Chang Lu)
dc.subject.keyword矽場發射陣列,場發射,半導體場發射,多電子束微影,反應式離子蝕刻,zh_TW
dc.subject.keywordsilicon field emission array,silicon tips array,field emission,multiple e-beam lithography,reactive ion etching,en
dc.relation.page141
dc.rights.note有償授權
dc.date.accepted2008-06-30
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
11.28 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved