請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37837完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳文章(Wen-Chang Chen) | |
| dc.contributor.author | Hung-Wen Su | en |
| dc.contributor.author | 蘇鴻文 | zh_TW |
| dc.date.accessioned | 2021-06-13T15:46:32Z | - |
| dc.date.available | 2008-07-07 | |
| dc.date.copyright | 2008-07-07 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-06-30 | |
| dc.identifier.citation | Chapter 1
1 (a) P. Judeinstein and C. Sanchez, J. Mater. Chem., 1996, 6, 511; (b) C. Sanchez, F. Ribot and B. Ledeau, J. Mater. Chem., 1999, 9, 35; (c) C. Sanchez, G. J. de A, F. Ribot, T. Lalot, C. R. Mayer and V. Cabuil, Chem. Mater., 2001, 13, 3061; (d) C. Sanchez and B. Lebeau, MRS Bulletin, 2001, 5, 377; (e)C. Sanchez, B. Lebeau, F. Chaput and J. P. Boilot, Adv. Mater., 2003, 15, 1969; (f) C. Sanchez, B. Julian, P. Belleville and M. Popall, J. Mater. Chem., 2005, 15, 3559; (g) L. Nicole, C. Boissiere, D. Grosso, A. Quach and C. Sanchez, J. Mater. Chem., 2005, 15, 3598; (h) F. Mammeri, E. L. Bourhis, L. Rozes and C. Sanchez, J. Mater. Chem., 2005, 15, 3787. 2 (a) J. Wen and G. L. Wilkes, Chem. Mater., 1996, 8, 1667; (b) G. Schottner, Chem. Mater., 2001, 13, 3422. 3 P. Gomez-Romero and C. Sanchez Eds., Functional Hybrid Materials, Wiley-VCH, Weinheim, 2004. 4 G. Kickelbick, Hybrid Materials: Synthesis, Characterization, and Applications, Wiley-VCH, Weinheim, 2007. 5 J. Brinker and G. W. Scherer, Sol-Gel Science, Academic Press, London, 1990. 6 (a) U. Schubert, E. Arpac, W. Glaubitt, A. Helmerich and C. Chau, Chem. Mater., 1992, 4, 291; (b) K. G. Severin and J. S. Ledford, Chem. Mater., 1994, 6, 890; (c) D. D. Dunuwila, C. D. Gagliardi and K. Berglund, Chem. Mater., 1994, 6, 1556; (d) A. L. Linsebigler, G. Lu and J. T. Jr, Chem. Rev., 1995, 95, 735; (e) M. Burgos and M. Langlet, J. Sol-Gel Sci. Techn., 1999, 16, 267; (f) M. Langlet, A. Kim and M. Audier, J. Sol-Gel Sci. Techn., 2002, 25, 223; (g) A.. S. Cannon and J. C. Warner, Chem. Mater., 2004, 16, 5138; (h) S. Y. Choi, M. Mamak, N. Coombs, N. Chopra and G. A. Ozin, Adv. Funct. Mater., 2004, 14, 335; (i) W. Y. Gan, S. W. Lam, K. Chiang, R. Amal, H. Zhao and M. P. Brungs, J. Mater. Chem., 2007, 17, 952. 7 (a) G. Illia and C. Sanchez, New J. Chem., 2000, 24, 493, (b) G Illia, E. Scolan, A. Louis, P. Albouy and C. Sanchez, New J. Chem., 2001, 25, 156; (c) N. Steunou, S. Forster, P. Florian, C. Sanchez and M. Antonietti, J. Mater. Chem., 2002, 12, 3426; (d) L. Rozes, N. Steunou, G. Fornasieri and C. Sanchez, Monatshefte fur Chemie, 2006, 137, 501; (e) S. Trabelsi, A. Janke, R. Hassler, N. E. Zafeiropoulos, G. Fornasieri, S. Bocchini, L. Rozes, M. Stamm, J. Gerard and C. Sanchez, Macromolecules, 2005, 38, 6068. 8 K. Yanagisawa and J. Ovenstone, J. Phys. Chem. B, 1999, 103, 7781. 9 (a) Y. Kotani, A. Matsuda, M. Tatsumisago and T. Minami, J. Sol-Gel Sci. Techn., 2000, 19, 585; (b) Y. Kotani, A. Matsuda, T. Kogure, M. Tatsumisago, and T. Minami, Chem. Mater., 2001, 13, 2144; (c) Y. Kotani, T. Matoda, A. Matsuda, T. Kogure, M. Tatsumisago and T. Minami, J. Mater. Chem., 2001, 11, 2045; (d) A. Matsuda, T. Matoda, Y. Kotani, T. Kogure, M. Tatsimisago and T. Minami, J. Sol-Gel Sci. Techn., 2003, 26, 517; (e) A. Matsuda, T. Matoda, T. Kogure, K. Tadanaga, T. Minami and M. Tatsimisago, J. Sol-Gel Sci. Techn., 2003, 27, 61; (f) A. Matsuda, T. Matoda, T. Kogure, K. Tadanaga, T. Minami and M. Tatsumisago, Chem. Mater., 2005, 17, 749. 10 (a) J. Ovenstone and K. Yanagisawa, Chem. Mater., 1999, 11, 2770; (b) C. C. Wang and J. Y. Ying, Chem. Mater., 1999, 11, 3113; (c) M. Wu, G. Lin, D. Chen, G. Wang, D. He, S. Feng and R. Xu, Chem. Mater., 2002, 14, 1974; (d) Y. Djaoued, S. Badilescu and P. V. Ashrit, J. Sol-Gel Sci. Techn., 2002, 24, 247; (e) D. Zhang, T. Yoshida and H. Minoura, Adv. Mater., 2003, 15, 814; (f) I. Kartini. P. Meredith, J. C. Diniz and G. Q. Lu, J. Sol-Gel Sci. Techn., 2004, 31, 185; (g) K. Yu, J. Zhao, Y. Guo, X. Ding, H. Bala, Y. Liu and Z. Wang, Mater. Lett., 2005, 59, 2515; (h) Z. Li, B. Hou, Y. Xu, D. Wu, Y. Sun, W. Hu and F. Deng, J. Solid State Chem., 2005, 178, 1395; (i) W. A. Daoud and J. H. Xin, J. Am. Ceram. Soc., 2005, 88, 443. 11 (a) R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi and T. Watanabe, Nature, 1997, 388, 431; (b) R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitmura, M. Shimohigoshi and T. Watanabe, Adv. Mater., 1998, 10, 135; (c) N. Sakai, R. Wang, A. Fujishima, T. Watanabe and K. Hashimoto, Langmuir, 1998, 14, 5918; (d) R. Wang, N. Sakai, A. Fujishima, T. Watanabe and K. Hashimoto, J. Phys. Chem. B, 1999, 103, 2188; (e) M. Miyauchi, A. Nakajima, A. Fujishima, K. Hashimoto and T. Watanabe, Chem. Mater., 2000, 12, 3; (f) M. Miyauchi, A. Nakajima, K. Hashimoto and T. Watanabe, Adv. Mater., 2000, 12, 1923; (g) A. Fujishima, T. N. Rao and D. A. Tryk, J. Photochem. Photobio. C, 2000, 1, 1; (h) R. D. Sun, A. Nakajima, A. Fujishima, T. Watanabe and K. Hashimoto, J. Phys. Chem. B, 2001, 105, 1984; (i) N. Sakai, A. Fujishima, T. Watanabe and K. Hashimoto, J. Phys. Chem. B, 2001, 105, 3023; (j) M. Miyauchi, A. Nakajima, T. Watanabe and K. Hashimoto, Chem. Mater., 2002, 14, 2812; (k) N. Sakai, A. Fujishima, T. Watanabe and K. Hashimoto, J. Phys. Chem. B, 2003, 107, 1028; (l) T. Shibata, H. Irie and K. Hashimoto, J. Phys. Chem. B, 2003, 107, 10696. 12 (a) N. Stevens, C. I. Priest, R. Sedev and J. Ralston, Langmuir, 2003, 19, 3272; (b) A. Kanta, R. Sedev and J. Ralston, Langmuir, 2005, 21, 2400. 13 (a) W. C. Chen, S. J. Lee, L. H. Lee and J. L. Lin, J. Mater. Chem., 1999, 9, 2999; (b) L. H. Lee and W. C. Chen, Chem. Mater. 2001, 11, 1137. 14 (a) A. H. Yuwono, J. Xue, J. Wang, H. I. Elim, W. Ji, Y. Li and T. J. White, J. Mater. Chem., 2003, 13, 1475. (b) H. I. Elim, W. Ji, A. H. Yuwono, J. M. Xue, J. Wang, Appl. Phys. Lett., 2003, 82, 2691. (c) A. H. Yuwono, J. Xue, J. Wang, H. I. Elim and W. Ji, J. Elecroceram., 2006, 16, 431. (d) A. H. Yuwono, Y. Zhang, J. Wang, X. H. Zhang, H. Fan and W. Ji, Chem. Mater., 2006, 18, 5876. 15 (a) M. Camail, M. Humbert, A. Margaillan, A. Riondel and J. L. Vernet, Polymer, 1998, 39, 6525; (b) M. Camail, M. Humbert, A. Margaillan and J. L. Vernet, Polymer, 1998, 39, 6533; (c) F. X. Perrin, V. Nguyen, J. L. Vernet, Polymer, 2002, 43, 6159; (d) F. X. Perrin, V. Nguyen and J. L. Vernet, J. Sol-Gel Sci. Techn., 2003, 28, 205. 16 (a) O. Soppera, C. C. Barghorn and D. J. Lougnot, New J. Chem., 2001, 25, 1006; (b) M. Xiong, B. You, S. Zhou, and L. Wu, Polymer, 2004, 45, 2967; (c) M. Xiong, S. Zhou, L. Wu, B. Wang, and L. Yang, Polymer, 2004, 45, 8127; (d) M. Xiong, S. Zhou, B. You, G. Gu and L. Wu, J. Polym. Sci. B. Polym. Phys., 2004, 42, 3682. 17 (a) C. C. Chang and W. C. Chen, J. Polym. Sci. Polym. Chem., 2001, 39, 3419; (b) C. M. Chang, C. L. Chang and C. C. Chang, Macromol. Mater. Eng., 2006, 291, 1521; (c) H, W, Su and W. C. Chen, J. Mater. Chem., 2008, 18, 1139. 18 (a) M. Nandi, J. A. Conklin, L. Salvati and A. Sen, Chem. Mater., 1991, 3, 201; (b) M. Yoshida, M. Lal, N. Deepak Kumar and P. N. Prasad, J. Mater. Sci. 1997, 32, 4047; (c) P. C. Chiang and W. T. Whang, Polymer, 2003, 44, 2249. 19 (a) W. C. Chen and C. T. Yen, J. Polym. Res., 1999, 6, 197; (b) W. C. Chen, S. C. Lin, B. T. Dai and M. S. Tsai, J. Electrochem. Soc., 1999, 146, 3004; (c) W. C. Liu, C. C. Yang, W. C. Chen, B. T. Dai and M. S. Tsai, J. Non-Cryt.Solids, 2002, 311, 233; (d) L. H. Lee, W. C. Chen and W. C. Liu, J. Polym. Sci. A. Polym. Chem., 2002, 40, 1560; (e) W. C. Liu, Y. Y. Yu and W. C. Chen, J. Appl. Polym. Sci., 2004, 91, 2653. 20 (a) B. K. Coltrain, C. J. T. Landry, J. M. Oreilly, A. M. Chamberlain, G. A. Rakes, J. S. Sedita, L. W. Kelts, M. R. Landry and V. K. Long, Chem. Mater., 1993, 5, 1445; (b) R. H. Baney, M. Itoh, A. Sakakibara and T. Suzuki, Chem. Rev., 1995, 95, 1409; (c) Z. Bao, V. Kuck, J. A. Rogers and M. A. Paczkowski, Adv. Funct. Mater., 2002, 12, 526; (d) B. R. Kim, J. W. Kang, K. Y. Lee, J. M. Son and M. J. Ko, J. Mater. Sci., 2007, 42, 4591. 21 (a) K. J. Shea, D. A. Loy and O. Webster, J. Am. Chem. Soc., 1992, 114, 6700; (b) D. A. Loy and K. J. Shea, Chem. Rev., 1995, 95, 1431; (c) D. A. Loy, J. P. Carpenter, T. M. Alam, R. Shaltout, P. K. Dorhout, J. Greaves, J. H. Small and K. J. Shea, J. Am. Chem. Soc., 1999, 121, 5413; (d) D. A. Loy, B. M. Baugher, C. R. Baugher, D. A. Schneider and K. Rahimian, Chem. Mater., 2000, 12, 3624; (e) K. J. Shea and D. A. Loy, Chem. Mater., 2001, 13, 3306. 22 (a) W. C. Chen, L. H. Lee, B. F. Chen and C. T. Yen J. Mater. Chem., 2002, 12, 3644; (b) W. C. Chen, W. C. Liu, P. T. Wu and P. F. Chen, Mater. Chem. Phys., 2004, 83, 71. 23 (a) W. J. Lin, W. C. Chen, W. C. Wu, Y. H. Niu and A. K. Jen, Macromolecules, 2004, 37, 2335; (b) L. H. Lee and W. C. Chen, Polymer, 2005, 46, 2163. 24 (a) C. Zhang, F. Babonneau, C. Bonhomme, R. M. Laine, C. L. Soles, H. A. Hristov and A. F. Yee, J. Am. Chem. Soc., 1998, 120, 8380; (b) J. Choi, J. Harcup, A. F. Yee, Q. Zhu and R. M. Liane, J. Am. Chem. Soc., 2001, 123, 11420; (c) R. Tamaki, Y. Tanaka, M. Z. Asumcion, J. Choi and R. M. Liane, J. Am. Chem. Soc., 2001, 123, 12416; (d) J. Choi, A. F. Yee and R. M. Liane, Macromolecules, 2003, 36, 5666; (e) R. M. Liane, J. Mater. Chem., 2005, 15, 3725; (f) C. M. Brick, Y. Ouchi, Y. Chujo and R. M. Liane, Macromolecules, 2005, 38, 4661. 25 (a) J. J. Schwab and J. D. Lichtenhan, Appl. Organometal. Chem., 1998, 12, 707. 26 (a) D. Neumann, M. Fisher, L. Tran and J. G. Matisons, J. Am. Chem. Soc., 2002, 124, 13998; (b) K. M. Kim, D. K. Keum and Y. Chujo, Macromolecules, 2003, 36, 867; (c) M. J. Abad, L. Barral, D. P. Fasce and R. J. Williams, Macromolecules, 2003, 36, 3128; (d) C. M. Leu, Y. T. Chang and K. H. Wei, Macromolecules, 2003, 36, 9122; (e) G. M. Kim, H. Qin. F. C. Sun and P. T. Mather, J. Polym. Sci. B Polym. Phys., 2003, 41, 3299; (f) G. S. Constable, A. J. Lesser and E. B. Coughlin, Macromolecules, 2004, 37, 1276; (g) Y. Ni and S. Zheng, Macromol. Chem. Phys., 2005, 206, 2075; (h) C. H. Chou, S. L. Hsu, K. Dinakaran, M.Y. Chiu and K. H. Wei, Macromolecules, 2005, 38, 745; (i) Y. Xiao, L. Liu, C. He, W. S. Chin, T. Lin, K. Y. Mya, J. Huang and X. Lu, J. Mater. Chem., 2006, 16, 829; (j) T. H. Lee, J. H. Kim and B. S. Bae, J. Mater. Chem., 2006, 16, 1657; (k) H. J. Cho, D. H. Hwang, J. I. Lee, Y. K. Jung, J. H. Park, J. Lee, S. K. Lee and H. K. Shim, Chem. Mater., 2006, 18, 3780. 27 (a) A. Sellinger and R. M. Liane, Macromolecules, 1996, 29, 2327; (b) C. Zhang and R. M. Liane, J. Am. Chem. Soc., 2000, 122, 6979; (c) R. O. Costa and W. L. Vasconcelos, R. Tamaki and R. M. Liane, Macromolecules, 2001, 34, 5398. 28 (a) J. D. Lichtenhan, Y. A. Otonari and M. J. Carr, Macromolecules, 1995, 28, 8435; (b) Y. Ni and S. Zheng, Chem. Mater., 2004, 16, 5141; (c) O. toepfer, D. Neumann, N. R. Choudhury, A. Whittaker and J. Matisons, Chem. Mater., 2005, 17, 1027; (d) H. M. Lin, S. Y. Wu, C. F. Huang, S. W. Kuo and F. C. Chang, Macromol. Rapid Commun., 2006, 27, 1550. 29 (a) T. Asfea, M. J. MacLachlan, N. Coombs and G. A. Ozin, Nature, 1999, 402, 867; (b) S. Inagaki, S. Guan, Y. Fukushima, T. Ohsuna and O. Terasaki, J. Am. Chem. Soc., 1999, 121, 9611; (c) Y. Lu, H. Fan, N. Doke, D. A. Loy, R. A. Assink, D. A. Lavan and C. J. Brinker, J. Am. Chem. Soc., 2000, 122, 5258; (d) M. C. Burleigh, M. A. Markowitz, M. S. Spector and B. P. Gaber, Langmuir, 2001, 17, 7923; (e) B. D. Hatton, K. Landskron, W. Whitnall, D. D. Perovic and G. A. Ozin, Adv. Funct. Mater., 2005, 15, 823; (f) H. W. Ro, K. Char, E. C. Jeon, H. J. Kim, D. Kwon, H. J. Lee, J. K. Lee, H. W. Rhee, C. L. Soles and D. Y. Yoon, Adv. Mater., 2007, 19, 705. 30 (a) S. Yang, P. A. Mirau, C. S. Pai, O. Nalamasu, E. Reichmans, E. K. Lin, H. J. Lee, D. W. Gidley and J. Sun, Chem. Mater., 2001, 13, 2762, (b) S. Yang, J. C. Pai, C. S. Pai, G. Dabbagh, O. Nalamasu, E. Reichmanis, J. Seputro and Y. S. Obeng, J. Vac. Sci. Technol. B, 2001, 19, 2155, (c) S. Yang, P. A. Mirau, C. S. Pai, O. Nalamasu, E. Reichmanis, J. C. Pai, Y. S. Pbeng, J. Seputro, E. K. Lin, H. J. Lee, J. Sun and D. W. Gidley, Chem. Mater., 2002, 14, 369. 31 (a) Q. R. Huang, W. Volksen, E. Huang, M. Toney, C. W. Frank and R. D. Miller, Chem. Mater. 2002, 14, 3676, (b) H. C. Kim, J. B. Wilds, C. R. Kreller, W. Volksen, P. J. Brock, V. Y. Lee, T. Magbitang, J. L. Hedrick, C. J. Hawker and R. D. Miller, Adv. Mater., 2002, 14, 1637, (c) Q. R. Huang, H. C. Kim, E. Huang, D. Mecerreyes, J. L. Hedrick, W. Volksen, C. W. Frank and R. D, Miller, Macromolecules, 2003, 36, 7661, (d) Q. R. Huang, C. W. Frank, D. Mecerreyes, W. Volksen and R. D, Miller, Chem. Mater., 2005, 17, 1521, (e) P. Lazzeri, L. Vanzetti, M. Anderle, M. Bersani, J. J. Park, Z. Lin, R. M. Briber, G. W. Rubloff, H. C. Kim and R. D. Miller, J. Vac. Sci. Technol. B, 2005, 23, 908. 32 (a) B. Lee, Y. H. Park, Y. T. Hwang, W. OH, J. Yoon and M. Ree, Nat. Mater., 2005, 4, 147, (b) S. Jahromi and B. Mostert, Macromolecules, 2004, 37, 2159. 33 (a) C. V. Nguyen, K. R. Carter, C. J. Hawker, J. L. Hedrick, R. L. Jaffe, R. D. Miller, J. F. Remenar, H. W. Ree, P. M. Rice, M. F. Toney, M. Trollsas and D. Y. Yoon, Chem. Mater., 1999, 11, 3080, (b) W. Oh, Y. Hwang, Y. H. Park, S. H. Chu, K. Char, J. K. Lee and S. Y. Kim, Polymer, 2003, 44, 2519, (c) E. F. Connor, L. K. Sundberg, H. C. Kim, J. J. Cornelissen, T. Magbitang, P. M. Rice, V. Y. Lee, C. J. Hawker, W. Volksen, J. L, Hedrick and R. D. Miller, Angew. Chem. Int. Ed., 2003, 42, 3785, (d) H. C. Kim, G. Wallraff, C. R. Kreller, S. Angelos, V. Y. Lee, W. Volksen and R. D. Miller, Nano Lett., 2004, 4, 1169, (e) T. Magbitang, V. Y. Lee, R. D. Miller, M. F. Toney, Z. Lin, R. M. Briber, H. C. Kim and J. L. Hedrick, Adv. Mater., 2005, 17, 1031, (f) B. Lee, W. Oh, Y. Hwang, Y. H. Park, J. Yoon, K. S. Jin, K. Heo, J. Kim, K. W. Kim and M. Ree, Adv. Mater., 2005, 17, 696. (g) J. Yoon, K. Heo, W. Oh, K. S. Jin, S. Jin, J. Kim, K. W. Kim, T. Chang and M. Ree, Nanotechnology, 2006, 17, 3490. 34 (a) C. C. Yang, P. T. Wu, W. C. Chen and H. L. Chen, Polymer, 2004, 45, 5691, (b) Y. Chang, C. Y. Chen and W. C. Chen, J. Polym. Sci. B Polym. Phys., 2004, 42, 4466. 35 (a) S. Mikoshiba and S. Hayase, J. Mater. Chem., 1999, 9, 591, (b) C. Nguyen, C. J. Hawker, R. D. Miller, E. Huang and J. L. Hedrick, Macromolecules, 2000, 33, 4281, (c) H. J. Lee, E. K. Lin, H. Wang, W. L. Wu, W. Chen and E. S. Moyer, Chem. Mater., 2002, 14, 1845, (d) J. S. Kim, H. C. Kim, B. Lee and M. Ree, Polymer, 2005, 46, 7394, (e) H. W. Ro, K. J. Kim, P. Theato, D. W. Gridley and D. Y. Yoon, Macromolecules, 2005, 38, 1031, (f) B. J. Cha, S. Kim, K. Char, J. K. Lee, D. Y. Yoon and H. W. Rhee, Chem. Mater., 2006, 18, 378. 36 (a) C. Xu, L. Eldada, C. Wu, R. A. Norwood, L. W. Shacklette and J. T. Yardley, Chem. Mater., 1996, 8, 2701; (b) B. R. Harkness, K. Takeuchi and M. Tachikawa, Macromolecules, 1998, 31, 4798; (c) D. Blanc, S. Pelissier, K. Saravanamuttu, S. I. Najafi and M. P. Andrews, Adv. Mater., 1999, 11, 1508; (d) O. Soppera, C. Barghorn and D. J. Lougnot, New J. Chem., 2001, 25, 1006; (e) A. Shishido, I. B. Diviliansky, I. C. Khoo, T. S. Mayer, S. Nishimura, G. L. Egan and T. E. Mallouk, Appl. Phys. Lett., 2001, 79, 3332; (f) A. Matsuda, T. Sasaki, K. Tadanaga, M. Tatsumisago and T. Minami, Chem. Mater., 2002, 14, 2693; (g) O. Soppera, C. C. Barghorn, C. Carre and D. Blanc, Appl. Surf. Sci., 2002, 186, 91; (h) H. Segawa, S. Adachi, Y. Arai and K. Yoshida, J. Am. Ceram. Soc., 2003, 86, 761; (i) J. U. Park, W. S. Kim and B. S. Bae, J. Mater. Chem., 2003, 13, 738; (j) X. Zhang, H. Lu, A. M. Soutar and X. Zeng, J. Mater. Chem., 2004, 14, 357; (k) S. Jeong, W. H. Jang and J. Moon, Thin Solid Films, 2004, 466, 204; (l) S. J. Barstow, A. Jeyakumar, P. J. Roman, Jr and C. L. Henderson, J. Electrochem. Soc., 2004, 151, F235; (m) Y. W. Wanga, C. T. Yen and W. C. Chen, Polymer, 2005,46, 6959; (n) T. Imao, D. Hazama, N. Noma and S. ITO, J. Ceramic Soc. Japan, 2006, 114, 238; (o) T. Imao, T. Horiuchi, N. Noma and S. Ito, J. Sol-Gel Sci. Techn., 2006, 39, 119. 37 (a) L. L. Beecroft and C. K. Ober, Chem. Mater., 1997, 9, 1302; (b) A. Quach, V. Escax, L. Nicole, P. Goldner, O. Noel, P. Aschehoug, P. Hesemann, J. Moreau, D. Gourier and C. Sanchez, J. Mater. Chem., 2007, 17, 2552; (c) H. Althues, J. Henle and S. Kaskel, Chem. Soc. Rev., 2007, 36, 1454; (d) E. Holder, N. Tessler and A. L. Rogach, J. Mater. Chem., 2008, 18, 1064. 38 H. A. Macleod, Thin Film Optical Filters, Institute of Physics Publishing, London, 2001. 39 (a) D. Chen, Y. Yan, E. Westenberg, D. Niebauer, N. Sakaitani and S. R. Chaudhuri, J. Sol-Gel Sci. Techn., 2000, 19, 77; (b) D Chen, Solar Energy Mater. Solar Cells, 2001, 68, 313; (c) N. A. Dahoudi, H. Bisht, C. Gobbert, T. Krajewski and M. A. Aegerter, Thin Solid Films, 2001, 392, 299; (d) T. Ohishi, J. Non-Cryt. Solids, 2003, 332, 87; (e) R. Pareek, A. S. Joshi, P. D. Gupta, P. K. Biswas and S. Das, Optics Laser Techn., 2005, 37, 369; (f) U. Schulz, Appl. Optics, 2006, 45, 1608; (g) N. Yamaguchi, K. Tadanaga, A. Matsuda, T. Minami and M. Tatsumisago, Surf. Coatings Techn., 2006, 201, 3653. 40 (a) S. Walheim, E. Schaffer, J. Mlynek and U. Steiner, Science, 1999, 283, 520; (b) M. S. Park, Y. Lee and J. K. Kim, Chem. Mater., 2005, 17, 3944; (c) K. Biswas, S. Gangopadhyay, H. C. Kim and R. D. Miller, Thin Solid Films, 2006, 514, 350; (d) F. C. Cebeci, Z. Wu, L. Zhai, R. E. Cohen and M. F. Rubner, Langmuir, 2006, 22, 2856. 41 (a) H. Hattori, Adv. Mater., 2001, 13, 51; (b) H. Y. Koo, D. K. Yi, S. J. Yoo and D. Y. Kim, Adv. Mater., 2004, 16, 274; (c) X. T. Zhang, O. Sato, M. Taguchi, Y. Einaga, T. Murakami and A. Fujishima, Chem. Mater., 2005, 17, 696; (d) Z. Wu, J. Walish, A. Nolte, R. E. Cohen and M. F. Rubner, Adv. Mater., 2006, 18, 2699. 42 (a) M. Langlet, M. Burgos and C. Coutier, J. Sol-Gel Sci. Techn., 2001, 22, 139; (b) J. Y. Kim, Y. K. Han, E. R. Kim and K. S. Suh, Current Appl. Phys., 2002, 2, 123; (c) B. S. Richards, Solar Energy Mater. Solar Cells, 2003, 79, 369; (d) S. Y. Lien, D. S. Wuu, W. C. Yeh and J. C. Liu, Solar Energy Mater. Solar Cells, 2006, 90, 2710. 43 (a) H. Tani and S. Sakai, US4387960, 1983; (b) E. J. Bjornard, W. A. Meredith, US5579162, 1996; (c) K. Takematsu and H. Katagiri, US6207263B1, 2001; (d) M. Saif and H. Memarian, US6266193B1, 2001; (e) H. C. Choi, R. L. Jones, P. V. Nagarkar, W. K. Smyth, X. Z. Wang and Y. H. Chia, US6464822B1, 2002. 44 (a) L. Eldada, L. W. Shacklette, IEEE J. Selected Topics Quantum Electronics, 2000, 6, 54; (b) H. Ma, A. K. Jen and L. R. Dalton, Adv. Mater., 2002, 14, 1339. 45 (a) M. Usui, M. Hikita, T. Watanabe, M. Amano, S. Sugawara, S. Hayashida and S. Imamura, J. Lightwave Techn., 1996, 14, 2338; (b) R. Yoshimura, M. Hikita, S. Tomaru and S. Imamura, J. Lightwave Techn., 1998, 16, 1030; (c) J. P. D. Cook, G. O. Este, F. R. Shepherd, W. D. Westwood, J. Arrington, W. Moyer, J. Nurse and S. Powell, Appl. Optics, 1998, 37, 1220; (d) C. Pitois, S. Vukmirovic, A. Hult, D. Wiesmann and M. Robertsson, Macromolecules, 1999, 32, 2903; (e) Y. G. Zhao, W. K. Lu, Y. Ma, S. S. Kim, S. T. Ho and T. J. Marks, Appl. Phys. Lett., 2000, 77, 2961; (f) L. W. Shacklette, R. Blomquist, J. M. Deng, P. M. Ferm, M. Maxfield, J. Mato and H. Zou, Adv. Funct. Mater., 2003, 13, 453; (g) P. Gustafik, O. Sugihara and N. Okamoto, Jpn. J. Appl. Phys., 2004, 43, 2011. 46 (a) T. Watanabe, N. Ooba, S. Hayashida, T. Kurihara and S. Imamura, J. Lightwave Techn., 1998, 16, 1049; (b) M. Yoshida and P. N. Prasad, Chem. Mater., 1996, 8, 235; (c) J. H. Harreld, A. Esaki and G. D. Stucky, Chem. Mater., 2003, 15, 3481; (d) S. K. Medda, D. Kundu and G. De, J. Non-Cryt. Solids, 2003, 318, 149; (e) W. S. Kim, K. S. Kim, Y. J. Eo, K. B. Yoon and B. S. Bae, J. Mater. Chem., 2005, 15, 465. Chaper 2 1 (a) L. L. Beecroft and C. K. Ober, Chem. Mater., 1997, 9, 1302; (b) C. Sanchez, B. Lebeau, F. Chaput and J. P. Boilot, Adv. Mater., 2003, 15, 1969. ; (c) R. M. Laine, J. Mater. Chem., 2005, 15, 3725; (d) C. Sanchez, B. Julian, P. Belleville and M. Popall, J. Mater. Chem., 2005, 15, 3559, (e) H. Althues, J. Henle and S. Kaskel, Chem. Soc. Rev., 2007, 36, 1454. 2 P. Gomez-Romero and C. Sanchez Eds., Functional Hybrid Materials, Wiley-VCH, Weinheim, 2004. 3 G. Kickelbick, Hybrid Materials: Synthesis, Characterization, and Applications, Wiley-VCH, Weinheim, 2007. 4 (a)C. C. Chang and W. C. Chen, Chem. Mater. 2002, 12, 4242; (b) C. T. Yen, W. C. Chen, D. J. Liaw and H. Y. Lu, Polymer 2003, 44, 7079; (c)W. J. Lin, W. C. Chen, W. C. Wu, Y. H. Niu and A. K. Y. Jen, Macromolecules 2004, 37, 2335; (d) Y. W. Wang, C. T. Yen and W. C. Chen, Polymer 2005, 46, 6959; (e) H. W. Su, W. C. Chen, W. C. Lee and J. S. King, Macromol. Mater. Eng., 2007, 292, 666. 5 (a) C. Lu, Z. Cui, Y. Wang, Z. Li, C. Guan, B. Yang and J. Shen, J. Mater. Chem., 2003, 13, 2189. (b) C. Lu, C. Guan, Y. Liu, Y. Cheng and B. Yang, Chem. Mater., 2005, 17, 2448. (c) R. Houbertz, G. Domann, C. Cronauer, A. Schmitt, H. Martin, J.-U. Park, L. Frohlich, R. Buestrich, M. Popall, U. Streppel, P. Dannberg, C. Wachter and A. Brauer, Thin Solid Films, 2003, 442, 194. 6 (a) A. H. Yuwono, J. Xue, J. Wang, H. I. Elim, W. Ji, Y. Li and T. J. White, J. Mater. Chem., 2003, 13, 1475. (b) H. I. Elim, W. Ji, A. H. Yuwono, J. M. Xue, J. Wang, Appl. Phys. Lett., 2003, 82, 2691. (c) A. H. Yuwono, B. Liu, J. Xue, J. Wang, H. I. Elim, W. Ji, Y. Li and T. J. White, J. Mater. Chem., 2004, 14, 2978. (d) A. H. Yuwono, J. Xue, J. Wang, H. I. Elim and W. Ji, J. Elecroceram., 2006, 16, 431. (e) A. H. Yuwono, Y. Zhang, J. Wang, X. H. Zhang, H. Fan and W. Ji, Chem. Mater., 2006, 18, 5876. 7 (a)W. C. Chen, S. J. Lee, L. H. Lee and J. L. Lin, J. Mater. Chem., 1999, 9, 2999; (b) L. H. Lee and W. C. Chen, Chem. Mater. 2001, 11, 1137; (c)M. N. Xiong, B. You, S. X. Zhou and L. M. Wu, Polymer, 2004, 45, 2967. 8 (a)M. Camail, M. Humbert, A. Margaillan, A. Riondel and J. L. Vernet, Polymer, 1998, 39, 6525. (b)M. Camail, M. Humbert, A. Margaillan and J. L. Vernet, Polymer, 1998, 39, 6533. When the molar ratio of [Ti(OBu)4]/[COOH] 1 was used, gelation was formed simultaneously due to the presence of bridging bidentate coordination mode in titanium carboxylates. 9 (a) M. Nandi, J. A. Conklin, L. Salvati and A. Sen, Chem. Mater., 1991, 3, 201. (b)M. Yoshida, M. Lal, N. Deepak Kumar and P. N. Prasad, J. Mater. Sci. 1997, 32, 4047. (c) C. C. Chang and W. C. Chen, J. Polym. Sci. Polym. Chem., 2001, 39, 3419. (d) P. C. Chiang and W. T. Whang, Polymer, 2003, 44, 2249. (e)C. M. Chang, C. L. Chang and C. C. Chang, Macromol. Mater. Eng., 2006, 291, 1521. (f) C. C. Chang, K. H. Wei, Y. L. Chang and W. C. Chen, J. Polym. Res. 2003, 10, 1-6. 10 (a) W. C. Chen, L. H. Lee, B. F. Chen and C. T. Yen J. Mater. Chem., 2002, 12, 3644; (b) W. C. Chen, W. C. Liu, P. T. Wu and P. F. Chen, Mater. Chem. Phys., 2004, 83, 71. (c) Y. Sorek and R. Reisfeld, Appl. Phys. Lett., 1993, 63, 3256. 11 (a) B. Wang, G. L. Wilkes, J. C. Hedrick, S. C. Liptak, and J. E. McGrath, Macromolecules, 1991, 24, 3449; (b) S. Wu, G. Zhou, M. Gu, T. Suzuki, Y. Ito, B. Boury and Y. Sugahara, Chem. Lett., 2007, 36, 856; (c) J. L. H. Chau, Y. M. Lin, A. K. Li, W. F. Su, K. S. Chang, S. L. C. Hsu and T. L. Li, Mater. Lett., 2007, 61, 2908; (d) A. Di Gianni, S. Trabelsi, G. Rizza, M. Sangermano, H. Althues, S. Kaskel and B. Voit, Macromol. Chem. Phys., 2007, 208, 76; (e) S. Wu, G. Zhou and M. Gu, Opt. Mater., 2007, 29, 1793; (f) S. R. Lu, H. L. Zhang, C. X. Zhao and X. Y. Wang, Polymer, 2005, 46, 10484. (g) C. Molina, K. Dahmouche, P. Hammer, V. Bermudez, L. Carlos, M. Ferrari, M. Montagna, R. Goncalves, L. Oliveria, H. Edwards, Y. Messaddeq and S. Riberio, J. Braz. Chem. Soc., 2006, 17, 443. 12 (a) J. G. Liu, Y. Nakamura, Y. Shibasaki, S. Ando and M. Ueda, Macromolecules 2007, 40, 4614; (b) J. G. Liu, Y. Nakamura, Y. Shibasaki, S. Ando and M. Ueda, Polym. J., 2007, 39, 543. 13 M. Anpo, T. Shima, S. Kodama and Y. Kubokawa, J. Phys. Chem., 1987, 91, 4305. 14 L H. Lee, W. C. Chen and W. C. Liu, J. Polym. Sci. Polym. Chem., 2001, 40, 1560. Chapter 3 1 (a) L. L. Beecroft and C. K. Ober, Chem. Mater., 1997, 9, 1302; (b) R. M. Laine, J. Mater. Chem., 2005, 15, 3725; (c) C. Sanchez, B. Julian, P. Belleville and M. Popall, J. Mater. Chem., 2005, 15, 3559, (d) H. Althues, J. Henle and S. Kaskel, Chem. Soc. Rev., 2007, 36, 1454. 2 P. Gomez-Romero and C. Sanchez Eds., Functional Hybrid Materials, Wiley-VCH, Weinheim, 2004. 3 G. Kickelbick, Hybrid Materials: Synthesis, Characterization, and Applications, Wiley-VCH, Weinheim, 2007. 4 (a) C. Lu, Z. Cui, Y. Wang, Z. Li, C. Guan, B. Yang and J. Shen, J. Mater. Chem., 2003, 13, 2189. (b) C. Lu, C. Guan, Y. Liu, Y. Cheng and B. Yang, Chem. Mater., 2005, 17, 2448. 5 (a) C. C. Chang and W. C. Chen, Chem. Mater. 2002, 12, 4242; (b) C. T. Yen, W. C. Chen, D. J. Liaw and H. Y. Lu, Polymer 2003, 44, 7079; (c) C. C. Chang, K. H. Wei, Y. L. Chang, and W. C. Chen, J. Polym. Res. 2003, 10, 1-6; (d) W. J. Lin, W. C. Chen, W. C. Wu, Y. H. Niu and A. K. Y. Jen, Macromolecules 2004, 37, 2335; (d) Y. W. Wang, C. T. Yen and W. C. Chen, Polymer 2005, 46, 6959; (e) H. W. Su, W. C. Chen, W. C. Lee and J. S. King, Macromol. Mater. Eng., 2007, 292, 666. 6 (a) A. H. Yuwono, J. Xue, J. Wang, H. I. Elim, W. Ji, Y. Li and T. J. White, J. Mater. Chem., 2003, 13, 1475. (b) H. I. Elim, W. Ji, A. H. Yuwono, J. M. Xue, J. Wang, Appl. Phys. Lett., 2003, 82, 2691. (c) A. H. Yuwono, J. Xue, J. Wang, H. I. Elim and W. Ji, J. Elecroceram., 2006, 16, 431. (d) A. H. Yuwono, Y. Zhang, J. Wang, X. H. Zhang, H. Fan and W. Ji, Chem. Mater., 2006, 18, 5876. 7 (a)W. C. Chen, S. J. Lee, L. H. Lee and J. L. Lin, J. Mater. Chem., 1999, 9, 2999; (b) L. H. Lee and W. C. Chen, Chem. Mater. 2001, 11, 1137. 8 (a)M. Camail, M. Humbert, A. Margaillan, A. Riondel and J. L. Vernet, Polymer, 1998, 39, 6525. (b)M. Camail, M. Humbert, A. Margaillan and J. L. Vernet, Polymer, 1998, 39, 6533. 9 (a) M. Xiong, B. You, S. Zhou, and L. Wu, Polymer, 2004, 45, 2967. (b) M. Xiong, S. Zhou, L. Wu, B. Wang, and L. Yang, Polymer, 2004, 45, 8127. 10 (a) M. Nandi, J. A. Conklin, L. Salvati and A. Sen, Chem. Mater., 1991, 3, 201. (b) M. Yoshida, M. Lal, N. Deepak Kumar and P. N. Prasad, J. Mater. Sci. 1997, 32, 4047. (c) P. C. Chiang and W. T. Whang, Polymer, 2003, 44, 2249. 11 (a) C. C. Chang and W. C. Chen, J. Polym. Sci. Polym. Chem., 2001, 39, 3419; (b) C. M. Chang, C. L. Chang and C. C. Chang, Macromol. Mater. Eng., 2006, 291, 1521. (c) H, W, Su and W. C. Chen, J. Mater. Chem., 2008, 18, 1139. 12 (a) W. C. Chen, L. H. Lee, B. F. Chen and C. T. Yen J. Mater. Chem., 2002, 12, 3644; (b) W. C. Chen, W. C. Liu, P. T. Wu and P. F. Chen, Mater. Chem. Phys., 2004, 83, 71. 13 (a) B. Wang, G. L. Wilkes, J. C. Hedrick, S. C. Liptak, and J. E. McGrath, Macromolecules, 1991, 24, 3449; (b) S. Wu, G. Zhou, M. Gu, T. Suzuki, Y. Ito, B. Boury and Y. Sugahara, Chem. Lett., 2007, 36, 856; (c) A. Di Gianni, S. Trabelsi, G. Rizza, M. Sangermano, H. Althues, S. Kaskel and B. Voit, Macromol. Chem. Phys., 2007, 208, 76; (d) S. R. Lu, H. L. Zhang, C. X. Zhao and X. Y. Wang, Polymer, 2005, 46, 10484. 14 (a) K. Yanagisawa and J. Ovenstone, J. Phys. Chem. B, 1999, 103, 7781. (b) Y. Kotani, A. Matsuda, T. Kogure, M. Tatsumisago, and T. Minami, Chem. Mater., 2001, 13, 2144. (c) W. A. Daoud and J. H. Xin, J. Am. Ceram. Soc., 2005, 88, 443. 15 M. M. Ali and H. D. H. Stover, Macromolecules, 2004, 37, 5219. 16 G. D. Poe, W. L. Jarrett, C. W. Scales, and C. L. McCormick, Macromolecules, 2004, 37, 2603. 17 G. Beaucage, H. K. Kammler, and S. E. Pratsinis, J Appl. Cryst., 2004, 37, 523. 18 M. Anpo, T. Shima, S. Kodama and Y. Kubokawa, J. Phys. Chem., 1987, 91, 4305. Chapter 4 1 C. Sanchez, B. Lebeau, MRS Bull. 2001, 26, 377. 2 C. R. Kagan, D. B. Mitzi DB. Science 1999, 286, 945. 3 W. U. Huynh, J. J. Dittmer, A P. Alivisatos, Science 2002, 295, 2425. 4 N. Tessler, V. Medveder, M. Kazes, S. Kan, U. Banin, Science 2002, 295, 1506. 5 (a) Lee L.H, Chen WC. Chem. Mater. 2001, 11, 1137; (b) Chang C. C.; Chen, W. C. Chem. Mater. 2002, 12, 4242; (c) C. Y. Yen, W. C. Chen, D. J. Liaw, and H. Y. Lu, Polymer 2003, 44, 7079; (d) W. J. Lin, W. C. Chen, W. C. Wu, Y. H. Niu, A. K. Y. Jen, Macromolecules 2004, 37, 2335; (e) Y. W. Wang, C. T. Yen, W. C. Chen, Polymer 2005, 46, 6959. 6 (a) R. H. Baney, M. Itoh, A. Sakakibara, T. Suzuki, Chem. Rev. 1995, 95, 1409; (b) D. A. Loy, B. M. Baugher, C. R. Baugher, D. A. Schneider, K. Rahimian, Chem. Mater. 2000, 12, 3624; (c) R. M. Laine, J. Mater. Chem. 2005, 15, 3725. 7 (a) J. D. Lichtenhan, Y. A. Otonari, M. J. Carr, Macromolecules 1995, 28, 8435; (b) A. Sellinger, Macromolecules 1996, 29, 2327; (c) R. O. R. Costa, W. L. Vasconcelos, R. Tamaki, R. M. Laine, Macromolecules 2001, 34, 5398. 8 J. Choi, J. Harcup, A. F. Yee, J. Am. Chem. Soc. 2001, 123, 11420. 9 J. Choi, A. F. Yee, R. M. Laine, Macromolecules 2003, 36, 5666. 10 Y. Ni, S. Zheng Macromol. Chem. Phys. 2005, 206, 1075. 11 G. M. Kim, H. Qin, X. Fang, F. C. Sun, P. T. Mather, J. Polym. Sci. Polym. Phys. 2003, 41, 3299. 12 M. J. Abad, L. Barral, D. Fasce, R. J. J. Williams, Macromolecules 2003, 36, 3128. 13 L. H. Lee, W. C. Chen, Polymer 2005, 46, 2163 14 R. Tamaki, Y. Tanaka, M. Z. Asuncion, J. Choi, R. M. Laine, J. Am. Chem. Soc. 2001, 123, 12416. 15 C. M. Leu, Y. T. Chang, K. H. Wei, Macromolecules 2003, 36, 9122. 16 T. H. Lee, J. K. Kim, B. S. Bae, J. Mater. Chem. 2006, 16, 1657. 17 C. Zhang, F. Babonneau, C. Bonhomme, R. M. Laine, C. L. Soles, H. A. Hristov, A. F. Yee, J. Am. Chem. Soc. 1998, 120, 8380. 18 D. Neumann, M. Fisher, L. Tran, J. G. Matisons, J. Am. Chem. Soc. 2002, 124, 13998. 19 K. M. Kim, D. K. Keum, Y. Chujo, Macromolecules 2003, 36, 867. 20 G. S. Constable, A. J. Lesser, E. B. Coughlin, Macromolecules 2004, 37, 1276. 21 (a) W. C. Chen and C. T. Yen, J. Polym. Res. 1999, 6, 197; (b) W. C. Chen, S. C. Lin, B. T. Dai, and M. S. Tsai, J. Electrochem. Soc. 1999, 146, 3004; (c) W. C. Chen and C. T. Yen, J. Vac. Sci. Technol. B 2000, 18, 201; (d) W. C. Liu, C. C. Yang, W. C. Chen, B. T. Dai, and M. S. Tsai, J. Non. Cryst. Solids 2002, 311, 233; (e) C. C. Yang, W. C. Che, J. Mater. Chem. 2002, 12, 1138; (f) L. H. Lee, W. C. Chen, W. C, Liu, J. Polym. Sci. A Polym. Chem. 2002, 40, 1560; (g) W. C. Liu, Y. Y. Yu, W. C. Chen, J. Appl. Polym. Sci 2004, 91, 2653. 22 (a) T. Watanabe, N. Ooba, S. Hayashida, T. Kurihara, S. Imamura, J. Lightwave Technol. 1998, 16, 1049; (b) W. C. Chen, L. H. Lee, B. F. Chen, C. T. Yen, J. Mater. Chem. 2002, 12, 3644; (c) W. C. Chen, W. C. Liu, P. T. Wu, P. F. Chen, Mater. Chem. Phys. 2004, 83, 71. 23 (a) C. H. Chou, S. L. Hsu, K. Dinakaran, M. Y. Chiu, and K. W. Wei, Macromolecules 2005, 38, 745; (b) C. M. Brick, Y. Ouchi, Y. Chujo, R. M. Laine; Macromolecules 2005, 38, 4661; (c)Y. Xiao, L. Liu, C. He, W. S. Chin, T. Lin, K. Y. Mya, J. Huang, X. Lu, J. Mater. Chem. 2006, 16, 829; (d) H. J. Cho, D. H. Hwang, J. I. Lee, Y. K. Jung, J. H. Park, J. Lee, S. K. Lee, and H. K. Shim, Chem. Mater. 2006, 18, 3780. 24 (a) Y. Ni, S. Zheng, Chem. Mater. 2004, 16, 5141; (b) H. M. Lin, S. Y. Wu, P. Y. Huang, C. F. Huang, S. W. Kuo, F. C. Huang, Macromol. Rapid. Commun. 2006, 27, 1550. 25 H. Ma, A. K. Y. Jen, L. R. Dalton, Adv. Mater. 2002, 14, 1339. 26 L. Eldada, L. W. Shacklette, IEEE J. Sel. Top. Quantum Electronics 2000, 6, 54. Chapter 5 1 F. Schuth and W. Schmidt, Adv. Mater. 2002, 14, 629. 2 J. L. Hedrick, R. D. Miller, C. J. Hawker, K. R. Carter, W. Volksen, D. Y. Yoon and M. Trollsas, Adv. Mater. 1998, 10, 1049. 3 R. D. Miller, Science 1999, 286, 421. 4 J. L. Hedrick, T. Magbitang, E. F. Connor, T. Glauser, W. Volksen, C. J. Hawker, V. Y. Lee and R. D. Miller, Chem. Eur. J. 2002, 8, 3309. 5 M. Ree, J. Yoon and K. Heo, J. Mater. Chem. 2006, 16, 685. 6 B. Lee, Y. H. Park, Y. T. Hwang, W. OH, J. Yoon and M. Ree, Nat. Mater. 2005, 4, 147. 7 S. Jahromi and B. Mostert, Macromolecules 2004, 37, 2159. 8 W. Oh, Y. Hwang, Y. H. Park, S. H. Chu, K. Char, J. K. Lee and S. Y. Kim, Polymer 44 (2003) 2519. 9 E. F. Connor, L. K. Sundberg, H. C. Kim, J. J. Cornelissen, T. Magbitang, P. M. Rice, V. Y. Lee, C. J. Hawker, W. Volksen, J. L, Hedrick and R. D. Miller, Angew. Chem. Int. Ed. 2003, 42, 3785. 10 H. C. Kim, G. Wallraff, C. R. Kreller, S. Angelos, V. Y. Lee, W. Volksen and R. D. Miller, Nano Lett. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37837 | - |
| dc.description.abstract | 由於有機無機混成材料具有調控其彼此之間的特性來製備出各種創新的用途,所以近年來已廣泛地被探討。在混成材料中,二氧化鈦與倍半矽氧烷是兩種重要的奈米結構主體,然而其在光學膜上的應用卻尚未被完全開發與探討清楚,因此本論文的研究目標為設計與合成出新穎的高分子/二氧化鈦或倍半矽氧烷混成材料並探討其在光學膜上的應用,如高折射率薄膜、抗反射膜與光波導元件。
高分子/二氧化鈦混成材料部份,有兩種奈米複合材料被合成與鑑定。在第二章中,將描述有關高折射率聚醯亞胺-奈米晶粒二氧化鈦混成光學材料的合成方法與應用。可溶性、末端帶有酸基的聚醯亞胺將被利用來與四丁基鈦混成製備混成光學材料,此材料二氧化鈦含量可增加至90 wt%並具有1.943的高折射率,而其光學膜也可應用於三層抗反射塗層,在可見光範圍其反射率可小於0.5 %。在第三章中,將描述感光性聚丙烯酸-二氧化鈦混成光學材料的設計與合成。改質過的聚丙烯酸具有一半的壓克力官能基與一半的酸基可被利用來與壓克力官能基化三甲基矽烷修飾過的二氧化鈦前驅物混成製備出感光性光阻,其奈米二氧化鈦晶粒可以水熱法來促進生成且均勻分散於聚丙烯酸高分子中,此光學膜可直接利用黃光顯影製程製備出不同形狀之圖案也具有高折射率性質,因此可應用於抗反射光學膜。 高分子/倍半矽氧烷混成材料部份,有感光性與奈米孔洞混成材料將被合成與鑑定。在第四章中,將闡述以壓克力官能基化的聚氫基倍半矽氧烷與各種壓克力單體製備出感光性光阻,此光阻製備出之光學膜可以黃光顯影製程製作出Y形狀溝道圖案且具有低光傳損失性質,其光學膜也可應用於各種光波導元件上。在第五章中,具有奈米孔洞的聚甲基倍半矽氧烷光學膜可利用二甲基胺官能基化的倍半矽氧烷寡聚物作為孔洞生成劑並以熱燒結方式製備,在此光學膜中其奈米尺寸之孔洞可均勻分布於聚甲基倍半矽氧烷中且具有低介電常數與低折射率性質,在光電元件上可應用於低折射率光學膜與低介電材料。 以上合成出之高分子/二氧化鈦或倍半矽氧烷混成光學材料均具有比原材料更優異的各種光學特性,因此這些混成光學材料可應用於光學與光電元件上,如抗反射膜與光波導。 | zh_TW |
| dc.description.abstract | Organic-inorganic hybrid materials have been extensively studied recently since their molecular tailing properties could produce new functionalities. Titania and silsesquinoxaine represent two important nano-building blocks for hybrid materials. However, hybrid optical films based on these two nano-building blocks have not been fully explored yet. The objectives of this thesis are to synthesize hybrid nanocomposites of polymer/titania or silsesquioxane and explore their optical applications, including high refractive index films, antireflective films, and optical waveguides.
Two classes of polymer/nanocrystalline titania hybrids are synthesized and characterized. The methodology and procedures for high refractive index polyimide nanocrystalline-titania (PI-TiO2) hybrid optical materials are described in Chapter 2. A soluble polyimide with carboxylic acid end groups is formulated with titanium n-butoxide to yield the hybrid materials. The titania content could be as high as 90 wt% and thus a relative high refractive index of 1.943 could be obtained. It also demonstrates the application in three-layer anti-reflective coating and the reflectance is less than 0.5 % in the visible range. Besides, photosensitive poly(acrylic acid) – titania (PAA-TiO2) hybrid optical materials are synthesized and described in Chapter 3. Poly(acrylic acid) grafted with half degree of poly(ethylene glycol methacrylate) are formulated with titania modified with 3-methacryloxypropyl trimethoxysilane to yield the resist. Nanocrystalline titania could be generated by further hydrothermal treatment and well dispersed in the polymeric matrices. The hybrid films could be also patterned by a direct lithographic process and have high refractive index. These materials might have the potential applications in antireflection coating devices. For silsesquioxane-based nanocomposites, photosensitive or porous hybrid materials are synthesized and characterized. In Chapter 4, Propargyl methacrylate - functionalized poly(hydrogen silsesquioxanes) (PHSSQ-PMA) is synthesized by hydrosilylation and then formulated with acrylic monomer mixtures to yield the photosensitive optical hybrid materials. The hybrid materials could be developed to Y-shape channel patterns and have the applications in different optical waveguides. An example of nanoporous poly(methyl silsesquioxane) (Nanoporous PMSSQ) thin films fabricated through thermally sacrificing a new porogen, dimethylamino-functionalized polyhedral oligomeric silsesquioxane is presented in Chapter 5. Nano-size pores are homogeneously dispersed in PMSSQ matrices. Meanwhile, the low refractive index and the low dielectric constant could be obtained. The nanoporous thin films suggest the potential applications in low refractive index films and low-k dielectrics. The above titania or silsesquioxane based hybrid materials exhibit superior optical characteristics than their parent polymers. Such materials would be of interest in various optical and optoelectronic devices, such as antireflective films and optical waveguides… etc. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T15:46:32Z (GMT). No. of bitstreams: 1 ntu-97-D93549010-1.pdf: 7565352 bytes, checksum: 449d67e6de2588a9e6dfc7a5a53d1cb5 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 中文摘要 i
Abstract iii Table of Contents v List of Figures ix List of Tables xiv 1. Functional Hybrid Organic-Inorganic Nanocomposites 1 1.1 Introduction 1 1.2 Background of sol-gel chemistry 5 1.3 Strategies for the design of functional hybrid nanocomposites 9 1.3.1 Titania based hybrid nanocomposites 10 1.3.1.1 Hydrothermal crystallization 11 1.3.1.2 Photoinduced hydrophilicity 13 1.3.1.3 Titania-poly(acrylate) hybrids 14 1.3.1.4 Titania-polyimide hybrids 18 1.3.1.5 Titania-amphiphilic block copolymer hybrids 23 1.3.2 Silsesquioxane based hybrid nanocomposites 25 1.3.2.1 Poly(silsesquioxane)-polymer hybrids 28 1.3.2.2 Polyhedral oligomeric silsesquioxane (POSS) 30 1.3.2.3 Methacrylate functionalized POSS 32 1.3.2.4 Nanoporous organosilicate thin films 34 1.3.3 Patterning of hybrid nanocomposite films 39 1.4 Optical applications of functional hybrid nanocomposites 41 1.4.1 Antireflection coatings 42 1.4.1.1 Theory of optical thin film 44 1.4.1.2 Design of antireflection coating films 45 1.4.2 Optical waveguides 48 1.4.2.1 Optical loss 50 1.4.2.2 Materials for optical waveguides 52 1.5 Research objectives 56 References 58 2. High Refractive Index Polyimide-Titania Hybrid Optical Materials 65 2.1 Introduction 65 2.2 Experimental 68 2.2.1 Materials 68 2.2.2 Synthesis of polyimide with acid groups (6FDA-6FpDA-COOH) 68 2.2.3 Synthesis of polyimide without acid groups (6FDA-6FpDA-H) 69 2.2.4 Synthesis of polyimide-titania precursors and their hybrid films 70 2.2.5 Preparation of titania films (TP100) 71 2.3 Characterization 72 2.4 Results and Discussion 73 2.4.1 Structural characterizations 73 2.4.2 Thermal properties 74 2.4.3 Morphology analyses 76 2.4.4 Nanocrystallization analyses 79 2.4.5 Optical properties 80 2.4.6 Multilayer antireflection coatings 83 2.5 Conclusion 84 Reference 85 3. Photosensitive Poly(acrylic acid)-Titania Hybrid Optical Materials 87 3.1 Introduction 87 3.2 Experimental 89 3.2.1 Materials 89 3.2.2 Synthesis of poly(acrylic acid) grafted with poly(ethylene glycol) methacrylate (PAA-g-PEGMA) 89 3.2.3 Synthesis of the photocurable titania precursor (TiO2-MSMA) 91 3.2.4 Preparation of PAA-titania hybrid films and their photopatterning 91 3.3 Characterization 93 3.4 Results and Discussion 94 3.4.1 Structural characterizations of PAA-g-PEGMA 94 3.4.2 Properties and morphologies of poly(acrylic acid)-titania hybrid films 96 3.4.3 Nanostructural and nanocrystalline analyses 98 3.4.4 Optical properties 102 3.4.5 Patterning of PAA-titania hybrid films 104 3.5 Conclusions 105 References 106 4. Photosensitive Acrylic/Silsesquioxane Hybrid Optical Materials 109 4.1 Introduction 109 4.2 Experimental 111 4.2.1 Materials 111 4.2.2 Synthesis of methacrylate-functionalized poly(hydrogen silsesquioxanes) (PHSSQ-PMA) 111 4.2.3 Patterning of PHSSQ-PMA/acrylic hybrid materials 113 4.3 Characterization 115 4.4 Results and discussion 117 4.4.1 Polymer structure characterization of PHSSQ-PMA 117 4.4.2 Properties of PHSSQ-PMA/acrylic hybrid materials 119 4.4.3 Planar waveguides and channel patterns 123 4.5 Conclusion 126 References 127 5. Nanoporous Poly(Methyl Silsesquioxane) Optical Thin Films 129 5.1 Introduction 129 5.2 Experimental 131 5.2.1 Materials 131 5.2.1 Synthesis of dimethylamino-functionalized polyhedral oligomeric silsesquioxane (DMA-POSS) 132 5.2.2 Synthesis of poly(methyl silsesquioxane) precursor (PMSSQ) 132 5.2.3 Preparation of the nanoporous PMSSQ films using DMA-POSS as templates 133 5.3 Characterization 134 5.4 Results and Discussion 135 5.4.1 Structural characterizations of DMA-POSS 135 5.4.2 Properties of PMSSQ/DMA-POSS hybrids 137 5.4.3 Morphology analyses of nanoporous PMSSQ thin films 140 5.4.4 Properties of nanoporous PMSSQ thin films 143 5.5 Conclusions 144 References 145 6. Conclusion and Future Works 147 Autobiography 150 Publication Lists 151 Appendixes | |
| dc.language.iso | en | |
| dc.subject | 混成材料 | zh_TW |
| dc.subject | 二氧化鈦 | zh_TW |
| dc.subject | 倍半矽氧烷 | zh_TW |
| dc.subject | 高分子 | zh_TW |
| dc.subject | 光電應用 | zh_TW |
| dc.subject | Polymer | en |
| dc.subject | Application | en |
| dc.subject | Optoelectronic | en |
| dc.subject | Hybrid | en |
| dc.subject | Titania | en |
| dc.subject | Silsesquioxane | en |
| dc.title | 新穎性混成材料及其於光電應用:
高分子/奈米結晶二氧化鈦與高分子/倍半矽氧烷材料 | zh_TW |
| dc.title | New Hybrid Materials for Optoelectronic Applications:
Polymer/Nanocrystalline Titania and Polymer/Silsesquioxane Materials | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 劉貴生(Guey-Sheng Liou),王立義(Lee-Yih Wang),蔡豐羽(Feng-Yu Tsai),游洋雁(Yang-Yen Yu),劉博滔(Bo-Tau Liu) | |
| dc.subject.keyword | 混成材料,二氧化鈦,倍半矽氧烷,高分子,光電應用, | zh_TW |
| dc.subject.keyword | Hybrid,Titania,Silsesquioxane,Polymer,Optoelectronic,Application, | en |
| dc.relation.page | 151 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-07-01 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 7.39 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
