Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37835
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor彭?堅
dc.contributor.authorJhih-Rong Linen
dc.contributor.author林芝榕zh_TW
dc.date.accessioned2021-06-13T15:46:23Z-
dc.date.available2011-07-09
dc.date.copyright2008-07-09
dc.date.issued2008
dc.date.submitted2008-07-01
dc.identifier.citation[1] Andre, D, 'Solution directe du probleme resolu par M. Bertrand', Comptes Rendus Acad. Sci. Paris 105, (1887), 436-437
[2] Uspensky, J. V. 'Introduction to Mathematical Probability', McGraw-Hill(1937)
[3] Cox, J. C., Ross, S.A. and Rubinstein, M. 'Option pricing, a simplified approach', Journal of Financial Economics 7, 229--263
[4] Rubinstein, M. and Reiner, E. 'Exotic Options', Working Paper (1993), University of California at Berkeley
[5] Boyle, P. and Lau, S. 'Bumping up against the barrier with the binomial method', Journal of Derivatives 1, 4 (1994), 6--14
[6] Ritchken, P. 'On pricing barrier options', Journal of Derivatives 3, 19--28 (Winter 1995)
[7] Derman, E., Kani, I., Ergener, D. and Bardhan, I. 'Enhanced numerical methods for options with barriers', Goldman Sachs Working paper (May 1995)
[8] Reimer, M. and Sandmann, K., 'A discrete time approach for European and American barrier options', Discussion Paper, SFB~303, No.~B-272, (1996), University of Bonn
[9] Lyuu, Y. D. 'Very fast algorithms for barrier option pricing and the ballot problem', The Journal of Derivatives
5, No.~3, (Spring 1998), 68--79
[10] Dai, T. S. and Liu, L. M. and Lyuu, Y. D. 'Linear-time option pricing algorithms by combinatorics', Computers and Mathematics with Applications 2008 to appear.
[11] Gobet, E., 'Analysis of the zigzag convergence for barrier options with binomial trees', Prepublication #536 du laboratoire PMA, (1999). Unpublished manuscript.
[12] Villani, D. and Ruckenstein, A. E. 'Looking forward to pricing options from binomial trees', EconWPA (2000), 12pp.
[13] Buchen, P.W., 'Image options and the road to barriers',
Risk Magazine, 14, No.~9, (September 2001), 127--130
[14] Buchen, P.W., 'Pricing European barrier options', Working Paper, University of Sydney (Australia), (2006), 9pp.
[15] Chung, S. L., and Shih, P. T. 'Generalized Cox-Ross-Rubinstein Binomial Models', Management Science, (2007) 53, 508-520.
[16] Chang, L. B. and Palmer, K., 'Smooth convergence in the binomial model', Finance and stochastics, Vol~11, No.~2,(2007), 91--105
[17] Lyuu, Y. D., 'Financial engineering and computation: Principles, Mathematics, Algorithms', Cambridge University Press, 2002.
[18] Hull, J. C., 'Options, futures, and other derivatives',(6th Edition). Prentice Hall, New Jersey. (2006)
[19] Haug, E., 'Barrier Put-Call transformations', Paloma Partners working paper, 1999
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37835-
dc.description.abstract障礙選擇權的類型主要可分為向上生效型、向上終止型、向下生效型和向下終止型四種,又還可依其為買權還是賣權、美式還是歐式來區分,因此如何對這些各式各樣類型的障礙選擇權作評價並且探討其收斂性是本文的重點。雖在文獻上對於障礙選擇權的評價方法有很多,但本文主要是建構在風險中立下,將反射原理的概念運用到二元樹模型後再對歐式障礙選擇權作評價。
首先,本文利用反射原理分別去探討向上和向下生效型的路徑數,接著藉由選擇權的價格會等於未來期望值的折現得到歐式障礙選擇權的價格,再利用 Uspensky 的方法推導出其收斂至Black-Scholes 的價格公式。
分析結果顯示,歐式障礙選擇權的收斂速度會依履約價格位置的不同而有所不同,可能是$frac{1}{sqrt{n}}$或者是$frac{1}{n}$。但對於一些特定$n$的情況下,履約價格的位置並不會影響到其收斂速度,所得到的結果皆為$frac{1}{n}$。而在本文的最後也會帶入一些數值做運算來驗證我們的結論。
zh_TW
dc.description.abstractBarrier options have four types: up-and-in, up-and-out, down-and-in and down-and-out. Barrier options also distinguish between call and put, American and European. In this paper, how to price and discuss the convergence of European barrier options is our goal.
First, we use the reflection principle to discuss the number of paths for the down-and-in and up-and-in options. The price is its discounted expected payoff under the risk-neutral probability measures. Thus, we get the formula for the binomial price of European barrier options. Then we use Uspensky's method to discuss the convergence of the binomial price to the Black-Scholes price.
The convergence order depends on the strike price. We get the errors are of order $frac{1}{sqrt{n}}$ or $frac{1}{n}$ . But, for some n, the errors are all of order $frac{1}{n}$. Finally, we show the numerical results to verify our conclusions.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:46:23Z (GMT). No. of bitstreams: 1
ntu-97-R95221010-1.pdf: 469475 bytes, checksum: 732eabd6434686a89eb089fa6fdf0225 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents1 Introduction 1
2 Binomial formula for European barrier option 3
2.1 The reflection principle for European barrier options 4
2.2 Pricing European barrier options in the binomial lattice 11
2.3 Smooth convergence of European call option price 15
3 Convergence for European barrier option prices 20
3.1 Convergence for European down-and-out barrier option 20
3.2 Convergence for other European barrier options 50
4 The errors of European barrier options 55
4.1 The barrier effects on the errors for European barrier call options 55
4.2 Numerical Results 60
4.3 Further research 62
5 Appendix 64
6 Reference 72
dc.language.isoen
dc.subject反射原理zh_TW
dc.subject選擇權的收斂zh_TW
dc.subject障礙選擇權zh_TW
dc.subject新奇選擇權zh_TW
dc.subject二元樹模型zh_TW
dc.subjectreflection principleen
dc.subjectbarrier optionsen
dc.subjectconvergence of optionsen
dc.subjectexotic optionsen
dc.subjectbinomial modelen
dc.title以二元樹模型評價歐式障礙選擇權之收斂zh_TW
dc.titleConvergence in the Binomial Model for European Barrier Optionsen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee呂育道,張森林
dc.subject.keyword選擇權的收斂,障礙選擇權,新奇選擇權,二元樹模型,反射原理,zh_TW
dc.subject.keywordconvergence of options,barrier options,exotic options,binomial model,reflection principle,en
dc.relation.page74
dc.rights.note有償授權
dc.date.accepted2008-07-01
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
458.47 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved