Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 獸醫學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37760
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor朱瑞民(Rea-min Chu)
dc.contributor.authorYu-Shan Wangen
dc.contributor.author王愈善zh_TW
dc.date.accessioned2021-06-13T15:42:25Z-
dc.date.available2008-07-09
dc.date.copyright2008-07-09
dc.date.issued2008
dc.date.submitted2008-07-07
dc.identifier.citationReference:
1. Hart, D.N. (1997) Dendritic cells: unique leukocyte populations which control the primary immune response. Blood 90: 3245-3287.
2. Clark, G.J., Angel, N., Kato, M., Lopez, J.A., MacDonald, K., Vuckovic, S., Hart, D.N. (2000) The role of dendritic cells in the innate immune system. Microbes Infect 2: 257-272.
3. Steinman, R.M. (1991) The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 9: 271-296.
4. Zitvogel, L. (2002) Dendritic and Natural Killer Cells Cooperate in the Control/Switch of Innate Immunity. J. Exp. Med. 195: 9F-14.
5. Banchereau, J., Steinman, R.M. (1998) Dendritic cells and the control of immunity. Nature 392: 245-252.
6. Larsson, M., Fonteneau, J.F., Bhardwaj, N. (2001) Dendritic cells resurrect antigens from dead cells. Trends Immunol 22: 141-148.
7. Steinman, R.M., Banchereau, J. (2007) Taking dendritic cells into medicine. Nature 449: 419-426.
8. Reis e Sousa, C. (2006) Dendritic cells in a mature age. Nat Rev Immunol 6: 476-483.
9. Dudziak, D., Kamphorst, A.O., Heidkamp, G.F., Buchholz, V.R., Trumpfheller, C., Yamazaki, S., Cheong, C., Liu, K., Lee, H.W., Park, C.G., Steinman, R.M., Nussenzweig, M.C. (2007) Differential antigen processing by dendritic cell subsets in vivo. Science 315: 107-111.
10. Shortman, K., Naik, S.H. (2007) Steady-state and inflammatory dendritic-cell development. Nat Rev Immunol 7: 19-30.
11. Vicari, A.P., Caux, C., Trinchieri, G. (2002) Tumour escape from immune surveillance through dendritic cell inactivation. Semin Cancer Biol 12: 33-42.
12. Kortylewski, M., Kujawski, M., Wang, T., Wei, S., Zhang, S., Pilon-Thomas, S., Niu, G., Kay, H., Mule, J., Kerr, W.G., Jove, R., Pardoll, D., Yu, H. (2005) Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nat Med 11: 1314-1321.
13. Khong, H.T., Restifo, N.P. (2002) Natural selection of tumor variants in the generation of 'tumor escape' phenotypes. Nature immunology 3: 999-1005.
14. Overwijk, W.W. (2005) Breaking tolerance in cancer immunotherapy: time to ACT. Curr Opin Immunol 17: 187-194.
15. Gillespie, A.M., Coleman, R.E. (1999) The potential of melanoma antigen expression in cancer therapy. Cancer treatment reviews 25: 219-227.
16. Nishioka, Y., Nishimura, N., Suzuki, Y., Sone, S. (2001) Human monocyte-derived and CD83(+) blood dendritic cells enhance NK cell-mediated cytotoxicity. Eur J Immunol 31: 2633-2641.
17. Ferlazzo, G., Tsang, M.L., Moretta, L., Melioli, G., Steinman, R.M., Munz, C. (2002) Human dendritic cells activate resting natural killer (NK) cells and are recognized via the NKp30 receptor by activated NK cells. J Exp Med 195: 343-351.
18. Pecher, G., Haring, A., Kaiser, L., Thiel, E. (2002) Mucin gene (MUC1) transfected dendritic cells as vaccine: results of a phase I/II clinical trial. Cancer Immunol Immunother 51: 669-673.
19. Small, E.J., Fratesi, P., Reese, D.M., Strang, G., Laus, R., Peshwa, M.V., Valone, F.H. (2000) Immunotherapy of hormone-refractory prostate cancer with antigen-loaded dendritic cells. J Clin Oncol 18: 3894-3903.
20. Siena, S., Di Nicola, M., Bregni, M., Mortarini, R., Anichini, A., Lombardi, L., Ravagnani, F., Parmiani, G., Gianni, A.M. (1995) Massive ex vivo generation of functional dendritic cells from mobilized CD34+ blood progenitors for anticancer therapy. Exp Hematol 23: 1463-1471.
21. Romani, N., Gruner, S., Brang, D., Kampgen, E., Lenz, A., Trockenbacher, B., Konwalinka, G., Fritsch, P.O., Steinman, R.M., Schuler, G. (1994) Proliferating dendritic cell progenitors in human blood. J Exp Med 180: 83-93.
22. Cella, M., Sallusto, F., Lanzavecchia, A. (1997) Origin, maturation and antigen presenting function of dendritic cells. Curr Opin Immunol 9: 10-16.
23. Hagglund, H.G., McSweeney, P.A., Mathioudakis, G., Bruno, B., Georges, G.E., Gass, M.J., Moore, P., Sale, G.E., Storb, R., Nash, R.A. (2000) Ex vivo expansion of canine dendritic cells from CD34+ bone marrow progenitor cells. Transplantation 70: 1437-1442.
24. Weber, M., Lange, C., Gunther, W., Franz, M., Kremmer, E., Kolb, H.J. (2003) Minor histocompatibility antigens on canine hemopoietic progenitor cells. J Immunol 170: 5861-5868.
25. Yoshida, H., Momoi, Y., Taga, N., Ide, K., Yamazoe, K., Iwasaki, T., Kudo, T. (2003) Generation of canine dendritic cells from peripheral blood mononuclear cells. J Vet Med Sci 65: 663-669.
26. Catchpole, B., Stell, A.J., Dobson, J.M. (2002) Generation of blood-derived dendritic cells in dogs with oral malignant melanoma. J Comp Pathol 126: 238-241.
27. Ibisch, C., Pradal, G., Bach, J.M., Lieubeau, B. (2005) Functional canine dendritic cells can be generated in vitro from peripheral blood mononuclear cells and contain a cytoplasmic ultrastructural marker. J Immunol Methods 298: 175-182.
28. Bonnefont-Rebeix, C., de Carvalho, C.M., Bernaud, J., Chabanne, L., Marchal, T., Rigal, D. (2006) CD86 molecule is a specific marker for canine monocyte-derived dendritic cells. Vet Immunol Immunopathol 109: 167-176.
29. Isotani, M., Katsuma, K., Tamura, K., Yamada, M., Yagihara, H., Azakami, D., Ono, K., Washizu, T., Bonkobara, M. (2006) Efficient generation of canine bone marrow-derived dendritic cells. J Vet Med Sci 68: 809-814.
30. Yao, V., Platell, C., Hall, J.C. (2002) Dendritic cells. ANZ J Surg 72: 501-506.
31. Jonuleit, H., Giesecke-Tuettenberg, A., Tuting, T., Thurner-Schuler, B., Stuge, T.B., Paragnik, L., Kandemir, A., Lee, P.P., Schuler, G., Knop, J., Enk, A.H. (2001) A comparison of two types of dendritic cell as adjuvants for the induction of melanoma-specific T-cell responses in humans following intranodal injection. Int J Cancer 93: 243-251.
32. Sallusto, F., Palermo, B., Lenig, D., Miettinen, M., Matikainen, S., Julkunen, I., Forster, R., Burgstahler, R., Lipp, M., Lanzavecchia, A. (1999) Distinct patterns and kinetics of chemokine production regulate dendritic cell function. Eur J Immunol 29: 1617-1625.
33. Wan, Y., Bramson, J. (2001) Role of dendritic cell-derived cytokines in immune regulation. Curr Pharm Des 7: 977-992.
34. Verhasselt, V., Buelens, C., Willems, F., De Groote, D., Haeffner-Cavaillon, N., Goldman, M. (1997) Bacterial lipopolysaccharide stimulates the production of cytokines and the expression of costimulatory molecules by human peripheral blood dendritic cells: evidence for a soluble CD14-dependent pathway. J Immunol 158: 2919-2925.
35. Efron, P.A., Tsujimoto, H., Bahjat, F.R., Ungaro, R., Debernardis, J., Tannahill, C., Baker, H.V., Edwards, C.K., Moldawer, L.L. (2005) Differential maturation of murine bone-marrow derived dendritic cells with lipopolysaccharide and tumor necrosis factor-alpha. J Endotoxin Res 11: 145-160.
36. Baggiolini, M. (1995) Activation and recruitment of neutrophil leukocytes. Clin Exp Immunol 101 Suppl 1: 5-6.
37. Feniger-Barish, R., Ran, M., Zaslaver, A., Ben-Baruch, A. (1999) Differential modes of regulation of cxc chemokine-induced internalization and recycling of human CXCR1 and CXCR2. Cytokine 11: 996-1009.
38. McColl, S.R. (2002) Chemokines and dendritic cells: a crucial alliance. Immunol Cell Biol 80: 489-496.
39. Foti, M., Granucci, F., Aggujaro, D., Liboi, E., Luini, W., Minardi, S., Mantovani, A., Sozzani, S., Ricciardi-Castagnoli, P. (1999) Upon dendritic cell (DC) activation chemokines and chemokine receptor expression are rapidly regulated for recruitment and maintenance of DC at the inflammatory site. Int Immunol 11: 979-986.
40. Yoneyama, H., Narumi, S., Zhang, Y., Murai, M., Baggiolini, M., Lanzavecchia, A., Ichida, T., Asakura, H., Matsushima, K. (2002) Pivotal role of dendritic cell-derived CXCL10 in the retention of T helper cell 1 lymphocytes in secondary lymph nodes. J Exp Med 195: 1257-1266.
41. Vulcano, M., Albanesi, C., Stoppacciaro, A., Bagnati, R., D'Amico, G., Struyf, S., Transidico, P., Bonecchi, R., Del Prete, A., Allavena, P., Ruco, L.P., Chiabrando, C., Girolomoni, G., Mantovani, A., Sozzani, S. (2001) Dendritic cells as a major source of macrophage-derived chemokine/CCL22 in vitro and in vivo. Eur J Immunol 31: 812-822.
42. Dustin, M.L., Allen, P.M., Shaw, A.S. (2001) Environmental control of immunological synapse formation and duration. Trends Immunol 22: 192-194.
43. Murgia C, P.J., Kim SY, Fassati A, Weiss RA (2006) Clonal Origin and Evolution of a Transmissible Cancer. Cell 126: 477-487.
44. Chu, R.M., Lin, C.Y., Liu, C.C., Yang, S.Y., Hsiao, Y.W., Hung, S.W., Pao, H.N., Liao, K.W. (2001) Proliferation characteristics of canine transmissible venereal tumor. Anticancer Res 21: 4017-4024.
45. Cohen, D. (1985) The canine transmissible venereal tumor: a unique result of tumor progression. Adv Cancer Res 43: 75-112.
46. Hsiao, Y.W., Liao, K.W., Hung, S.W., Chu, R.M. (2004) Tumor-Infiltrating Lymphocyte Secretion of IL-6 Antagonizes Tumor-Derived TGF-beta1 and Restores the Lymphokine-Activated Killing Activity. J Immunol 172: 1508-1514.
47. Hsiao, Y.W., Liao, K.W., Hung, S.W., Chu, R.M. (2002) Effect of tumor infiltrating lymphocytes on the expression of MHC molecules in canine transmissible venereal tumor cells. Vet Immunol Immunopathol 87: 19-27.
48. Menetrier-Caux, C., Montmain, G., Dieu, M.C., Bain, C., Favrot, M.C., Caux, C., Blay, J.Y. (1998) Inhibition of the differentiation of dendritic cells from CD34(+) progenitors by tumor cells: role of interleukin-6 and macrophage colony-stimulating factor. Blood 92: 4778-4791.
49. Um, S.H., Mulhall, C., Alisa, A., Ives, A.R., Karani, J., Williams, R., Bertoletti, A., Behboudi, S. (2004) {alpha}-Fetoprotein Impairs APC Function and Induces Their Apoptosis. J Immunol 173: 1772-1778.
50. Katsenelson, N.S., Shurin, G.V., Bykovskaia, S.N., Shogan, J., Shurin, M.R. (2001) Human small cell lung carcinoma and carcinoid tumor regulate dendritic cell maturation and function. Mod Pathol 14: 40-45.
51. Harizi H, J.M., Pitard V, Moreau JF, Gualde N (2002) Cyclooxygenase-2-issued prostaglandin e(2) enhances the production of endogenous IL-10, which down-regulates dendritic cell functions. Journal of Immunology 168: 2255-2263.
52. Takahashi, A., Kono, K., Ichihara, F., Sugai, H., Fujii, H., Matsumoto, Y. (2004) Vascular endothelial growth factor inhibits maturation of dendritic cells induced by lipopolysaccharide, but not by proinflammatory cytokines. Cancer Immunol Immunother 53: 543-550.
53. Hirano, A., Brown, W.C., Estes, D.M. (1997) Cloning, expression and biological function of the bovine CD40 homologue: role in B-lymphocyte growth and differentiation in cattle. Immunology 90: 294-300.
54. Chakraborty, A., Li, L., Chakraborty, N.G., Mukherji, B. (1999) Stimulatory and inhibitory maturation of human macrophage-derived dendritic cells. Pathobiology 67: 282-286.
55. Larmonier, N., Marron, M., Zeng, Y., Cantrell, J., Romanoski, A., Sepassi, M., Thompson, S., Chen, X., Andreansky, S., Katsanis, E. (2007) Tumor-derived CD4+CD25+ regulatory T cell suppression of dendritic cell function involves TGF- and IL-10. Cancer Immunology, Immunotherapy 56: 48-59.
56. Lewis, C.E., Pollard, J.W. (2006) Distinct Role of Macrophages in Different Tumor Microenvironments. Cancer Res 66: 605-612.
57. Vaupel, P., Kallinowski, F., Okunieff, P. (1989) Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 49: 6449-6465.
58. O'Hayre, M., Salanga, C.L., Handel, T.M., Allen, S.J. (2008) Chemokines and cancer: migration, intracellular signalling and intercellular communication in the microenvironment. Biochem J 409: 635-649.
59. Nikitina, E.Y., Gabrilovich, D.I. (2001) Combination of gamma-irradiation and dendritic cell administration induces a potent antitumor response in tumor-bearing mice: approach to treatment of advanced stage cancer. Int J Cancer 94: 825-833.
60. Hsu, F.J., Benike, C., Fagnoni, F., Liles, T.M., Czerwinski, D., Taidi, B., Engleman, E.G., Levy, R. (1996) Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat Med 2: 52-58.
61. Nestle, F.O., Alijagic, S., Gilliet, M., Sun, Y., Grabbe, S., Dummer, R., Burg, G., Schadendorf, D. (1998) Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med 4: 328-332.
62. Candido, K.A., Shimizu, K., McLaughlin, J.C., Kunkel, R., Fuller, J.A., Redman, B.G., Thomas, E.K., Nickoloff, B.J., Mule, J.J. (2001) Local administration of dendritic cells inhibits established breast tumor growth: implications for apoptosis-inducing agents. Cancer Res 61: 228-236.
63. Schnurr, M., Scholz, C., Rothenfusser, S., Galambos, P., Dauer, M., Robe, J., Endres, S., Eigler, A. (2002) Apoptotic pancreatic tumor cells are superior to cell lysates in promoting cross-priming of cytotoxic T cells and activate NK and gammadelta T cells. Cancer Res 62: 2347-2352.
64. Mir, L.M., Roth, C., Orlowski, S., Quintin-Colonna, F., Fradelizi, D., Belehradek, J., Jr., Kourilsky, P. (1995) Systemic antitumor effects of electrochemotherapy combined with histoincompatible cells secreting interleukin-2. J Immunother Emphasis Tumor Immunol 17: 30-38.
65. Iida, N., Haisa, M., Igarashi, A., Pencev, D., Grotendorst, G.R. (1996) Leukocyte-derived growth factor links the PDGF and CXC chemokine families of peptides. Faseb J 10: 1336-1345.
66. Malkowski, M.G., Lazar, J.B., Johnson, P.H., Edwards, B.F. (1997) The amino-terminal residues in the crystal structure of connective tissue activating peptide-III (des10) block the ELR chemotactic sequence. J Mol Biol 266: 367-380.
67. Walz, A., Baggiolini, M. (1989) A novel cleavage product of beta-thromboglobulin formed in cultures of stimulated mononuclear cells activates human neutrophils. Biochem Biophys Res Commun 159: 969-975.
1. Hart, D.N. (1997) Dendritic cells: unique leukocyte populations which control the primary immune response. Blood 90: 3245-3287.
2. Clark, G.J., Angel, N., Kato, M., Lopez, J.A., MacDonald, K., Vuckovic, S., Hart, D.N. (2000) The role of dendritic cells in the innate immune system. Microbes Infect 2: 257-272.
3. Steinman, R.M. (1991) The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 9: 271-296.
4. Banchereau, J., Briere, F., Caux, C., Davoust, J., Lebecque, S., Liu, Y.J., Pulendran, B., Palucka, K. (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18: 767-811.
5. Thurner, B., Haendle, I., Roder, C., Dieckmann, D., Keikavoussi, P., Jonuleit, H., Bender, A., Maczek, C., Schreiner, D., von den Driesch, P., Brocker, E.B., Steinman, R.M., Enk, A., Kampgen, E., Schuler, G. (1999) Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J Exp Med 190: 1669-1678.
6. Dhodapkar, K.M., Krasovsky, J., Williamson, B., Dhodapkar, M.V. (2002) Antitumor Monoclonal Antibodies Enhance Cross-Presentation of Cellular Antigens and the Generation of Myeloma-specific Killer T Cells by Dendritic Cells. J. Exp. Med. 195: 125-133.
7. Hagglund, H.G., McSweeney, P.A., Mathioudakis, G., Bruno, B., Georges, G.E., Gass, M.J., Moore, P., Sale, G.E., Storb, R., Nash, R.A. (2000) Ex vivo expansion of canine dendritic cells from CD34+ bone marrow progenitor cells. Transplantation 70: 1437-1442.
8. Weber, M., Lange, C., Gunther, W., Franz, M., Kremmer, E., Kolb, H.J. (2003) Minor histocompatibility antigens on canine hemopoietic progenitor cells. J Immunol 170: 5861-5868.
9. Yoshida, H., Momoi, Y., Taga, N., Ide, K., Yamazoe, K., Iwasaki, T., Kudo, T. (2003) Generation of canine dendritic cells from peripheral blood mononuclear cells. J Vet Med Sci 65: 663-669.
10. Catchpole, B., Stell, A.J., Dobson, J.M. (2002) Generation of blood-derived dendritic cells in dogs with oral malignant melanoma. J Comp Pathol 126: 238-241.
11. Ibisch, C., Pradal, G., Bach, J.M., Lieubeau, B. (2005) Functional canine dendritic cells can be generated in vitro from peripheral blood mononuclear cells and contain a cytoplasmic ultrastructural marker. J Immunol Methods 298: 175-182.
12. Bonnefont-Rebeix, C., de Carvalho, C.M., Bernaud, J., Chabanne, L., Marchal, T., Rigal, D. (2006) CD86 molecule is a specific marker for canine monocyte-derived dendritic cells. Vet Immunol Immunopathol 109: 167-176.
13. Liao, K.W., Hung, S.W., Hsiao, Y.W., Bennett, M., Chu, R.M. (2003) Canine transmissible venereal tumor cell depletion of B lymphocytes: molecule(s) specifically toxic for B cells. Vet Immunol Immunopathol 92: 149-162.
14. Peretz, Y., Zhou, Z.F., Halwani, F., Prud'homme, G.J. (2002) In Vivo Generation of Dendritic Cells by Intramuscular Codelivery of FLT3 Ligand and GM-CSF Plasmids. Molecular Therapy 6: 407-414.
15. Sombroek, C.C., Stam, A.G., Masterson, A.J., Lougheed, S.M., Schakel, M.J., Meijer, C.J., Pinedo, H.M., van den Eertwegh, A.J., Scheper, R.J., de Gruijl, T.D. (2002) Prostanoids play a major role in the primary tumor-induced inhibition of dendritic cell differentiation. J Immunol 168: 4333-4343.
16. Livak, K.J., Schmittgen, T.D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402-408.
17. Fujiwara, S., Yasunaga, S., Iwabuchi, S., Masuda, K., Ohno, K., Tsujimoto, H. (2003) Cytokine profiles of peripheral blood mononuclear cells from dogs experimentally sensitized to Japanese cedar pollen. Vet Immunol Immunopathol 93: 9-20.
18. Kiertscher, S.M., Luo, J., Dubinett, S.M., Roth, M.D. (2000) Tumors promote altered maturation and early apoptosis of monocyte-derived dendritic cells. J Immunol 164: 1269-1276.
19. Shen, W., Ladisch, S. (2002) Ganglioside GD1a impedes lipopolysaccharide-induced maturation of human dendritic cells. Cell Immunol 220: 125-133.
20. Chi, C.H., Wang, Y.S., Lai, Y.S., Chi, K.H. (2003) Anti-tumor effect of in vivo IL-2 and GM-CSF electrogene therapy in murine hepatoma model. Anticancer Res 23: 315-321.
21. Bender, A., Sapp, M., Schuler, G., Steinman, R.M., Bhardwaj, N. (1996) Improved methods for the generation of dendritic cells from nonproliferating progenitors in human blood. J Immunol Methods 196: 121-135.
22. Chakravarty, P.K., Alfieri, A., Thomas, E.K., Beri, V., Tanaka, K.E., Vikram, B., Guha, C. (1999) Flt3-ligand administration after radiation therapy prolongs survival in a murine model of metastatic lung cancer. Cancer Res 59: 6028-6032.
23. Cella, M., Sallusto, F., Lanzavecchia, A. (1997) Origin, maturation and antigen presenting function of dendritic cells. Curr Opin Immunol 9: 10-16.
24. Wright, S.D., Ramos, R.A., Tobias, P.S., Ulevitch, R.J., Mathison, J.C. (1990) CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249: 1431-1433.
25. Freundenthal, P.S., Steinman, R.M. (1990) The Distinct Surface of Human Blood Dendritic Cells, as Observed After an Improved Isolation Method. PNAS 87: 7698-7702.
26. Lauener, R.P., Goyert, S.M., Geha, R.S., Vercelli, D. (1990) Interleukin 4 down-regulates the expression of CD14 in normal human monocytes. Eur J Immunol 20: 2375-2381.
27. Albert, M.L., Sauter, B., Bhardwaj, N. (1998) Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 392: 86-89.
28. O'Sullivan, B., Thomas, R. (2003) Recent advances on the role of CD40 and dendritic cells in immunity and tolerance. Curr Opin Hematol 10: 272-278.
29. Inaba, K., Inaba, M., Romani, N., Aya, H., Deguchi, M., Ikehara, S., Muramatsu, S., Steinman, R.M. (1992) Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med 176: 1693-1702.
30. Romani, N., Reider, D., Heuer, M., Ebner, S., Kampgen, E., Eibl, B., Niederwieser, D., Schuler, G. (1996) Generation of mature dendritic cells from human blood. An improved method with special regard to clinical applicability. J Immunol Methods 196: 137-151.
31. Yao, V., Platell, C., Hall, J.C. (2002) Dendritic cells. ANZ J Surg 72: 501-506.
32. Galkowska, H., Waldemar, L.O., Wojewodzka, U. (1996) Reactivity of antibodies directed against human antigens with surface markers on canine leukocytes. Veterinary Immunology and Immunopathology 53: 329-334.
33. Basu, S., Binder, R.J., Suto, R., Anderson, K.M., Srivastava, P.K. (2000) Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int Immunol 12: 1539-1546.
34. Holmes, M.A., Lunn, D.P. (1994) Variation of MHC II expression on canine lymphocytes with age. Tissue Antigens 43: 179-183.
35. Cobbold, S., Metcalfe, S. (1994) Monoclonal antibodies that define canine homologues of human CD antigens: summary of the First International Canine Leukocyte Antigen Workshop (CLAW). Tissue Antigens 43: 137-154.
1. Hart, D.N. (1997) Dendritic cells: unique leukocyte populations which control the primary immune response. Blood 90: 3245-3287.
2. Clark, G.J., Angel, N., Kato, M., Lopez, J.A., MacDonald, K., Vuckovic, S., Hart, D.N. (2000) The role of dendritic cells in the innate immune system. Microbes Infect 2: 257-272.
3. Banchereau, J., Briere, F., Caux, C., Davoust, J., Lebecque, S., Liu, Y.J., Pulendran, B., Palucka, K. (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18: 767-811.
4. Banchereau, J., Steinman, R.M. (1998) Dendritic cells and the control of immunity. Nature 392: 245-252.
5. Yao, V., Platell, C., Hall, J.C. (2002) Dendritic cells. ANZ J Surg 72: 501-506.
6. Jonuleit, H., Giesecke-Tuettenberg, A., Tuting, T., Thurner-Schuler, B., Stuge, T.B., Paragnik, L., Kandemir, A., Lee, P.P., Schuler, G., Knop, J., Enk, A.H. (2001) A comparison of two types of dendritic cell as adjuvants for the induction of melanoma-specific T-cell responses in humans following intranodal injection. Int J Cancer 93: 243-251.
7. Wang, Y.S., Chi, K.H., Liao, K.W., Liu, C.C., Cheng, C.L., Lin, Y.C., Cheng, C.H., Chu, R.M. (2007) Characterization of canine monocyte-derived dendritic cells with phenotypic and functional differentiation. Can J Vet Res Accepted.
8. Hagglund, H.G., McSweeney, P.A., Mathioudakis, G., Bruno, B., Georges, G.E., Gass, M.J., Moore, P., Sale, G.E., Storb, R., Nash, R.A. (2000) Ex vivo expansion of canine dendritic cells from CD34+ bone marrow progenitor cells. Transplantation 70: 1437-1442.
9. Weber, M., Lange, C., Gunther, W., Franz, M., Kremmer, E., Kolb, H.J. (2003) Minor histocompatibility antigens on canine hemopoietic progenitor cells. J Immunol 170: 5861-5868.
10. Yoshida, H., Momoi, Y., Taga, N., Ide, K., Yamazoe, K., Iwasaki, T., Kudo, T. (2003) Generation of canine dendritic cells from peripheral blood mononuclear cells. J Vet Med Sci 65: 663-669.
11. Catchpole, B., Stell, A.J., Dobson, J.M. (2002) Generation of blood-derived dendritic cells in dogs with oral malignant melanoma. J Comp Pathol 126: 238-241.
12. Ibisch, C., Pradal, G., Bach, J.M., Lieubeau, B. (2005) Functional canine dendritic cells can be generated in vitro from peripheral blood mononuclear cells and contain a cytoplasmic ultrastructural marker. J Immunol Methods 298: 175-182.
13. Bonnefont-Rebeix, C., de Carvalho, C.M., Bernaud, J., Chabanne, L., Marchal, T., Rigal, D. (2006) CD86 molecule is a specific marker for canine monocyte-derived dendritic cells. Vet Immunol Immunopathol 109: 167-176.
14. Cella, M., Sallusto, F., Lanzavecchia, A. (1997) Origin, maturation and antigen presenting function of dendritic cells. Curr Opin Immunol 9: 10-16.
15. Wan, Y., Bramson, J. (2001) Role of dendritic cell-derived cytokines in immune regulation. Curr Pharm Des 7: 977-992.
16. Verhasselt, V., Buelens, C., Willems, F., De Groote, D., Haeffner-Cavaillon, N., Goldman, M. (1997) Bacterial lipopolysaccharide stimulates the production of cytokines and the expression of costimulatory molecules by human peripheral blood dendritic cells: evidence for a soluble CD14-dependent pathway. J Immunol 158: 2919-2925.
17. Efron, P.A., Tsujimoto, H., Bahjat, F.R., Ungaro, R., Debernardis, J., Tannahill, C., Baker, H.V., Edwards, C.K., Moldawer, L.L. (2005) Differential maturation of murine bone-marrow derived dendritic cells with lipopolysaccharide and tumor necrosis factor-alpha. J Endotoxin Res 11: 145-160.
18. Liao, K.W., Hung, S.W., Hsiao, Y.W., Bennett, M., Chu, R.M. (2003) Canine transmissible venereal tumor cell depletion of B lymphocytes: molecule(s) specifically toxic for B cells. Vet Immunol Immunopathol 92: 149-162.
19. Peretz, Y., Zhou, Z.F., Halwani, F., Prud'homme, G.J. (2002) In Vivo Generation of Dendritic Cells by Intramuscular Codelivery of FLT3 Ligand and GM-CSF Plasmids. Molecular Therapy 6: 407-414.
20. Sombroek, C.C., Stam, A.G., Masterson, A.J., Lougheed, S.M., Schakel, M.J., Meijer, C.J., Pinedo, H.M., van den Eertwegh, A.J., Scheper, R.J., de Gruijl, T.D. (2002) Prostanoids play a major role in the primary tumor-induced inhibition of dendritic cell differentiation. J Immunol 168: 4333-4343.
21. Fujiwara, S., Yasunaga, S., Iwabuchi, S., Masuda, K., Ohno, K., Tsujimoto, H. (2003) Cytokine profiles of peripheral blood mononuclear cells from dogs experimentally sensitized to Japanese cedar pollen. Vet Immunol Immunopathol 93: 9-20.
22. Peeters, D., Peters, I.R., Farnir, F., Clercx, C., Day, M.J. (2005) Real-time RT-PCR quantification of mRNA encoding cytokines and chemokines in histologically normal canine nasal, bronchial and pulmonary tissue. Veterinary Immunology and Immunopathology 104: 195.
23. Livak, K.J., Schmittgen, T.D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402-408.
24. Morelli, A.E., Zahorchak, A.F., Larregina, A.T., Colvin, B.L., Logar, A.J., Takayama, T., Falo, L.D., Thomson, A.W. (2001) Cytokine production by mouse myeloid dendritic cells in relation to differentiation and terminal maturation induced by lipopolysaccharide or CD40 ligation. Blood 98: 1512-1523.
25. Langenkamp, A., Messi, M., Lanzavecchia, A., Sallusto, F. (2000) Kinetics of dendritic cell activation: impact on priming of TH1, TH2 and nonpolarized T cells. Nat Immunol 1: 311-316.
26. Khanna, A., Morelli, A.E., Zhong, C., Takayama, T., Lu, L., Thomson, A.W. (2000) Effects of Liver-Derived Dendritic Cell Progenitors on Th1- and Th2-Like Cytokine Responses In Vitro and In Vivo. J Immunol 164: 1346-1354.
27. Elkord, E., Williams, P.E., Kynaston, H., Rowbottom, A.W. (2005) Human monocyte isolation methods influence cytokine production from in vitro generated dendritic cells. Immunology 114: 204-212.
28. Ebner, S., Hofer, S., Nguyen, V.A., Furhapter, C., Herold, M., Fritsch, P., Heufler, C., Romani, N. (2002) A Novel Role for IL-3: Human Monocytes Cultured in the Presence of IL-3 and IL-4 Differentiate into Dendritic Cells That Produce Less IL-12 and Shift Th Cell Responses Toward a Th2 Cytokine Pattern. J Immunol 168: 6199-6207.
29. Pernis, A., Gupta, S., Gollob, K.J., Garfein, E., Coffman, R.L., Schindler, C., Rothman, P. (1995) Lack of interferon gamma receptor beta chain and the prevention of interferon gamma signaling in TH1 cells. Science 269: 245-247.
30. Wallet, M.A., Sen, P., Tisch, R. (2005) Immunoregulation of dendritic cells. Clin Med Res 3: 166-175.
31. Nagorsen, D., Marincola, F.M., Panelli, M.C. (2004) Cytokine and chemokine expression profiles of maturing dendritic cells using multiprotein platform arrays. Cytokine 25: 31-35.
32. D'Andrea, A., Ma, X., Aste-Amezaga, M., Paganin, C., Trinchieri, G. (1995) Stimulatory and inhibitory effects of interleukin (IL)-4 and IL-13 on the production of cytokines by human peripheral blood mononuclear cells: priming for IL-12 and tumor necrosis factor alpha production. J. Exp. Med. 181: 537-546.
33. Muchamuel, T., Menon, S., Pisacane, P., Howard, M.C., Cockayne, D.A. (1997) IL-13 protects mice from lipopolysaccharide-induced lethal endotoxemia: correlation with down-modulation of TNF-alpha, IFN-gamma, and IL-12 production. J Immunol 158: 2898-2903.
34. Moschella, F., Maffei, A., Catanzaro, R.P., Papadopoulos, K.P., Skerrett, D., Hesdorffer, C.S., Harris, P.E. (2001) Transcript profiling of human dendritic cells maturation-induced under defined culture conditions: comparison of the effects of tumour necrosis factor alpha, soluble CD40 ligand trimer and interferon gamma. British Journal of Haematology 114: 444-457.
35. Chomarat, P., Banchereau, J. (1998) Interleukin-4 and interleukin-13: their similarities and discrepancies. Int Rev Immunol 17: 1-52.
36. Bellinghausen, I., Brand, P., Bottcher, I., Klostermann, B., Knop, J., Saloga, J. (2003) Production of interleukin-13 by human dendritic cells after stimulation with protein allergens is a key factor for induction of T helper 2 cytokines and is associated with activation of signal transducer and activator of transcription-6. Immunology 108: 167-176.
37. Bianchi, R., Grohmann, U., Vacca, C., Belladonna, M.L., Fioretti, M.C., Puccetti, P. (1999) Autocrine IL-12 Is Involved in Dendritic Cell Modulation Via CD40 Ligation. J Immunol 163: 2517-2521.
38. Langelaar, M.F., Weber, C.N., Overdijk, M.B., Muller, K.E., Koets, A.P., Rutten, V.P. (2005) Cytokine gene expression profiles of bovine dendritic cells after interaction with Mycobacterium avium ssp. paratuberculosis (M.a.p.), Escherichia coli (E. coli) or recombinant M.a.p. heat shock protein 70. Vet Immunol Immunopathol 107: 153-161.
39. Karp, C.L., Wysocka, M., Ma, X., Marovich, M., Factor, R.E., Nutman, T., Armant, M., Wahl, L., Cuomo, P., Trinchieri, G. (1998) Potent suppression of IL-12 production from monocytes and dendritic cells during endotoxin tolerance. Eur J Immunol 28: 3128-3136.
40. Macatonia, S.E., Hosken, N.A., Litton, M., Vieira, P., Hsieh, C.S., Culpepper, J.A., Wysocka, M., Trinchieri, G., Murphy, K.M., O'Garra, A. (1995) Dendritic cells produce IL-12 and direct the development of Th1 cells from naive CD4+ T cells. J Immunol 154: 5071-5079.
41. d'Ostiani, C.F., Del Sero, G., Bacci, A., Montagnoli, C., Spreca, A., Mencacci, A., Ricciardi-Castagnoli, P., Romani, L. (2000) Dendritic cells discriminate between yeasts and hyphae of the fungus Candida albicans. Implications for initiation of T helper cell immunity in vitro and in vivo. J Exp Med 191: 1661-1674.
42. Whelan, M., Harnett, M.M., Houston, K.M., Patel, V., Harnett, W., Rigley, K.P. (2000) A filarial nematode-secreted product signals dendritic cells to acquire a phenotype that drives development of Th2 cells. J Immunol 164: 6453-6460.
43. Iezzi, G., Scotet, E., Scheidegger, D., Lanzavecchia, A. (1999) The interplay between the duration of TCR and cytokine signaling determines T cell polarization. Eur J Immunol 29: 4092-4101.
44. Josien, R., Wong, B.R., Li, H.L., Steinman, R.M., Choi, Y. (1999) TRANCE, a TNF family member, is differentially expressed on T cell subsets and induces cytokine production in dendritic cells. J Immunol 162: 2562-2568.
45. Jakobsen, M.A., Moller, B.K., Lillevang, S.T. (2004) Serum Concentration of the Growth Medium Markedly Affects Monocyte-Derived Dendritic Cells' Phenotype, Cytokine Production Profile and Capacities to Stimulate in MLR. Scandinavian Journal of Immunology 60: 584-591.
46. Chang, C.-C.J., Wright, A., Punnonen, J. (2000) Monocyte-Derived CD1a+ and CD1a- Dendritic Cell Subsets Differ in Their Cytokine Production Profiles, Susceptibilities to Transfection, and Capacities to Direct Th Cell Differentiation. J Immunol 165: 3584-3591.
1. Banchereau, J., Briere, F., Caux, C., Davoust, J., Lebecque, S., Liu, Y.J., Pulendran, B., Palucka, K. (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18: 767-811.
2. Onishi, H., Kuroki, H., Matsumoto, K., Baba, E., Sasaki, N., Kuga, H., Tanaka, M., Katano, M., Morisaki, T. (2004) Monocyte-derived dendritic cells
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37760-
dc.description.abstract樹枝狀細胞(Dendritic cells, DC)是一種抗原呈現細胞 (antigen presenting cells, APC),能將外來抗原吞噬,並將抗原呈現至細胞表面,刺激T細胞、B細胞與NK細胞的活化。近來有研究人員由犬之骨髓及週邊血中培養出DC,但對其表面抗原及功能特性皆未有進一步分析與探討。T細胞、B細胞與NK細胞皆受DC之調控,DC功能成熟度決定Th1或Th2細胞免疫之免疫抑制或增強反應,而DC的成熟度與腫瘤微環境有很微妙的關係為目前非常重要的研究。有關犬DC的研究方法所知甚少,我們由犬周邊血中成功培養DC,由犬周邊血中培養DC,其表面抗原經分析有CD1a+、CD11c+、CD14+、CD40+、CD86+及MHC II+之表現。其中人類CD40及CD80之單株抗體可交互作用於犬樹枝狀細胞表面抗原,而CD86及CD83則無法交互偵測。對於細胞功能分析方面,犬DC具有顯著之抗原吞噬及刺激異體T細胞增生功能。我們利用此犬DC進行後續研究及臨床治療。進一步我們觀察犬DC在LPS 及TNF-alpha刺激成熟後之細胞激素分泌概況。DC是身體內主要分泌細胞激素的細胞,而犬DC的細胞激素分泌概況至今尚無相關報告。由表面抗原分析及功能性測試證明在LPS及TNF-alpha刺激下DC會進入成熟期。以Real-time RT-PCR觀察DC之細胞激素基因表現,發現LPS刺激之DC會大量表現IL-1beta、IL-10、IL-12p40、IL-13及TNF-alpha,將此DC與淋巴球細胞共同培養時,發現此DC會引發T淋巴球分化至第一型幫助者T細胞;而TNF-alpha刺激之DC則是大量表現IL-2、IL-4、IL-12p40、IL-13、TNF-alpha、TGF-beta、IFN-gamma及MCP-2,再進一步將此DC與淋巴球細胞共同培養時,發現此DC會引發T淋巴球分化至第二型幫助者T細胞。因此,犬DC在不同刺激下會釋放不同之細胞激素進而影響先天及後天免疫反應。在腫瘤與DC的關係中,我們以犬傳染性花柳性腫瘤 (CTVT) 為模式,探討DC與該疾病的病理致病機轉的關連性。犬樹枝狀細胞與CTVT細胞培養上凊液共同培養後,以流式細胞儀觀察,發現CTVT細胞培養上凊液確會引起樹枝狀細胞的死亡,其可能之死亡途徑為自然凋亡。並降低表面抗原之表現及抗原吞噬的能力。我們發現腫瘤生長初期病犬主要免疫細胞-DC無論在功能上、數量上皆被顯著抑制,甚至引發DC死亡。在病犬身上抽取血液及淋巴結或是作樹枝狀細胞的體外培養皆發現存在相同的現象。在初步瞭解DC與腫瘤間之關係後,我們假設在腫瘤內以電基因細胞激素治療會改變腫瘤內微環境,使腫瘤更易於治癒。我們以小鼠動物模式試驗此假設。我們証明重複施以細胞激素電基因治療合併DC治療為十分有效之免疫治療方式,可使腫瘤內形成一種易於免疫攻擊之微環境。且此治療方式一旦改變腫瘤內微環境,還可進一步增加腫瘤對放射線之敏感度。在對腫瘤內微環境有一些瞭解後,我們在分析DC細胞激素分泌概況時,意外發現DC在發炎反應相關激素刺激下,會分泌CXCL7。而CXCL此類之蛋白與腫瘤微環境有十分密切之關連。由於DC 與CXCL7間的相互關係幾乎沒有任何報告,因此我們接著進一步分析這兩者之間的關係。首先將CXCL7以RT-PCR找出基因全長並放入表現載體,在轉染進入小鼠纖維母細胞3T3中,使其產生重組CXCL7蛋白。並進一步確認其有效之生物活性-促使嗜中性白血球細胞移動。我們發現DC在IL-1beta,IL-6, TGF-beta及TNF-alpha刺激下會有大量CXCL7表現並引發嗜中性白血球細胞移動,在IFN-gamma及LPS刺激下就無此現象。這表示在某些微環境下,DC會引發Th1細胞反應,反之則會引發Th2細胞反應,而CXCL7似乎與這些反應有些關連。我們亦發現CTVT在快速生長期會大量表現CXCL7,在腫瘤消退期則表現量下降。這結果顯示CXCL7對於促進腫瘤生長扮演一定的角色。綜上所言,在此論文中我們成功的建立了犬DC的體外培養方式,進一步分析其細胞激素分泌概況並發現CXCL7在DC與腫瘤間之特殊表現情形。此外,我們也証明在CTVT中DC功能會受到顯著的抑制。最後,我們也証明在腫瘤內以電基因細胞激素治療會改變腫瘤內微環境,使腫瘤更易於治癒並增加腫瘤對放射線之敏感度。zh_TW
dc.description.abstractDendritic cells (DC) play fundamental roles both in innate and adaptive immune responses and are also critical in fighting against tumor growth by presenting tumor-specific antigens to initiate an effective immune response. DC capture pathogens and to present antigens to T cells in lymph nodes, the organ for the generation of immunity and tolerance. DC are found in tumors in animals including human, dog and mice. Tumors could inhibit immunity, escape from immunosurveillance, especially in tumor microenvironment by many pathways. Due to low DC numbers in tissues naturally, the development of techniques to generate large numbers of DC in culture from either proliferating CD34+ progenitors or non-proliferating CD14+ monocytic precursors is essential for DC immunotherapy. In this thesis, we have developed a procedure that could efficiently generate canine DC from peripheral blood monoclear cells (PBMC) in a relatively large amount. Using real-time RT-PCR, the expression of CD80, CD83, and CD86 were compared between immatureDC (iDC) and mature DC (mDC), and the functional profiles of the monocyte-derived DC were also determined. These results facilitate the use of canine DC for further immunotherapy research and clinical application. To understand the relationship between DC and CTVT, we investigated the effects of CTVT on monocyte-derived canine DC. CTVT impair the differentiation of DC, inhibited antigen uptake and presentation, and caused apoptosis of monocytes and DC. During spontaneous regression, DC activity is substantially recovered. Reestablished DC are believed to be potentially important host factors that push the tumor toward to regression. We hypothesized that immunological favorable microenvironment can be restored by intratumoral electrogene cytokine therapy. We confirmed this hypothesis in both mice and canine model. We have demonstrated that repeated cytokine EGT followed by intratumoral DC injection is an effective immunotherapy protocol. Intratumoral injection of DC is critical for tumor infiltration lymphocyte activation. A cytokine rich microenviroment is essential for DC maturation. We also found a cytokine rich microenvironment is synergistic with radiation. All of those approach confirm the importance of immunotherapybased on dendritic cells. In the following step, the profiles of cytokines expressed during canine DC maturation were investigated. The DC were induced to express different sets of cytokines following stimulation by LPS or TNF-alpha. The DC stimulated by LPS released a set of cytokines that promoted Th1 activity, whereas DC stimulated by TNF-alpha produced a set of cytokines that promoted Th2 activity. Thus, in addition to the up-regulation of surface molecules, including MHC II, CD11c, CD80, CD83, and CD86, cytokine release profiles are another important component of DC activation directed to different effector functions. During the cytokine profile assay, we found that DC could express CXCL7 under proinflammatory cytokines stimulation. Because it is poor understood about how DC and CXCL7 interacted, we further assay the expression of CXCL7 in canine DC. Full length canine CXCL7 was cloned and expressed in BALB/3T3 cells. Migration assay confirmed the bioactivity of canine CXCL7. DC expressed significantly higher levels of CXCL7 gene under IL-1beta and TNF-alpha stimulating. We also demonstrated that canine CXCL7 expressed by BALB/3T3 cells could induce canine neutrophils recruitment and suggest that this chemokine play a similar role, as other species do, in leukocytes infiltration. Dog DC express CXCL7 during IL-1beta, IL-6, TGF-beta and TNF-alpha stimulating indicates that migration of neutrophils can be influenced by DC. Based on the finding we described above, we further clarified the role of CXCL7 and DC in CTVT model. We analyzed CXCL7 protein expression in CTVT and investigated the clinical implications. Strong CXCL7 expression correlated with higher tumor stage. CXCL7 overexpression was associated with progression phase of CTVT. Regression phase express very low level of CXCL7. These results suggest a role for CXCL7 in the clinical course of CTVT. In conclusion, we had established canine DC research and therapy model for dog cancer and found the importance of CXCL7 in DC immunosuppression.en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:42:25Z (GMT). No. of bitstreams: 1
ntu-97-D91629002-1.pdf: 2874439 bytes, checksum: 1d5af56fcce54347128bbde064f577bd (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents審定書 I
誌謝 III
摘要 V
Abstract VII
Contents XI
Scheme 1
Outline 2
Chapter 1. Background and Literatures review 3
THE ROLE OF DENDRITIC CELLS IN IMMUNE SYSTEM 3
DENDRITIC CELLS IN CANCER 4
CANINE DENDRITIC CELLS CULTURE AND CHARACTERIZATION 5
DC AND CYTOKINES 6
DC AND CHEMOKINES 7
CANINE TRANSMISSIBLE VENEREAL TUMOR 9
DC AND CTVT 10
MICROENVIRONMENT AND TUMOR 10
HYPOTHESIS 12
RESEARCH OBJECTIVES 15
REFERENCE: 18
Chapter 2. Characterization of canine monocyte-derived dendritic cells with phenotypic and functional differentiation 25
ABSTRACT 25
INTRODUCTION 27
MATERIALS AND METHODS 28
Source Animals and the Generation of Monocyte-Derived DC 28
Morphological Examination 29
Flow Cytometry Analysis 30
Immuno-precipitation and immuno-blot analysis. 30
Real-Time RT-PCR 31
Measuring FITC-Dextran Uptake 33
Statistical Analysis 34
RESULTS 34
Generation of Monocyte-derived DC 34
Morphology of Canine Monocyte-Derived DC 36
DC Phenotype 36
Endocytotic Activity 37
Mixed-Lymphcyte Reaction 37
LPS-Dependent TNF-alpha Production Capacity Between the Monocytes iDC and mDC 38
DISCUSSION 38
REFERENCES 42
FIGURE LEGENDS 46
TABLE 49
TABLE 49
FIGURE 52
Chapter 3. Cytokine profiles of canine monocyte-derived dendritic cells as a function of lipopolysaccharide- or tumor
necrosis factor-alpha-induced maturation 57
ABSTRACT 57
INTRODUCTION 59
MATERIALS AND METHODS 61
Animals and generation of DC 61
Flow cytometry analysis of cell surface phenotypes 62
Extraction of RNA from DC 62
Reverse transcription of mRNA into cDNA 63
Primers 63
Quantitative RT-PCR 63
Data analysis of RT-PCR 64
Measuring FITC-dextran uptake 64
Mix Lymphocyte Reaction (MLR) 65
Allogeneic MLR and intracellular cytokine staining 65
Statistics 66
RESULTS 67
Generation of canine monocyte-derived DCs 67
Phenotypic and functional changes during maturation of canine DC 67
Differential cytokine expression by iDC, LPS-mDC, and TNF-alpha-mDC 68
mDC exhibited a Th1- or Th2-driving capacity after treatment with LPS or TNF-alpha 69
DISCUSSION 71
REFERENCE 76
TABLE 81
FIGURE LEGENDS 83
FIGURE 85
Chapter 4. Transient downregulation of monocyte-derived dendritic-cell differentiation, function, and survival during tumoral
progression and regression in an in vivo canine model of transmissible venereal tumor 91
ABSTRACT 91
INTRODUCTION 93
MATERIALS AND METHODS 95
Experimental animals, tumor inoculation, and determination of growth stage 95
Generation of peripheral blood mononuclear cells, monocytes, and monocyte-derived DCs 95
Sample preparation of draining lymph nodes of CTVT dogs 96
Purification of tumor infiltrating lymphocytes (TIL) 97
Flow cytometry 97
Real-time RT-PCR analysis of surface markers CD80, CD83, and CD86 and cytokine IL-12 expression 98
Enzyme-linked immunosorbent assay of TNF-alpha 99
FITC-dextran uptake 100
Mixed leukocyte reaction 100
Effect of CTVT cell-culture supernatants on monocyte-derived DCs 101
Effect of CTVT on monocytes 102
RESULTS 102
Growth phases 102
Changes in numbers of PBMCs, monocytes, and DCs during tumoral growth 102
Expression of surface markers on PBMCs, monocytes, iDCs, and mDCs 103
DC endocytic activity and allogeneic MLR results 103
IL-12 gene expression and TNF-alpha secretion by normal, P-phase, and R-phase DCs under lipopolysaccharide stimulation 104
DC killing by CTVT cell-culture supernatants 104
Decreased number of DCs in the draining LN of CTVT dogs 105
DISCUSSION 106
REFERENCE: 110
FIGURE LEGENDS 115
TABLE 117
FIGURE 120
Chapter 5. Synergistic Anti-Tumor Effect of Combination Radio- and Immuno-therapy by Electro-gene Therapy Plus Intra-tumor
Injection of Dendritic Cells 131
ABSTRACT 131
INTRODUCTION 132
MATERIALS AND METHODS 134
Animal and tumor model 134
Subcutaneous tumor model 134
Plasmids 134
Electro-gene therapy protocol and transfer efficiency 135
Cultured murine dentritic cells 136
Immunotherapy protocols 136
Immunohistochemical (IHC) assay of EGT-treated tumors 137
NK cell activity assay 137
Cytokine release assay 138
3H-thymidine incorporation the T cell proliferation assay 139
In vitro cytotoxicity assay (CTL) 139
Statistical analyses 140
RESULTS 141
Tumor growth inhibition by combination of IL-2/GM-CSF EGT followed by DC treatment 141
Evidence of greater tumor infiltrating lymphocyte activation by the combination of IL-2/GM-CSF followed by DC treatment 141
Increase in NK cell activity by the combination of IL-2/GM-CSF EGT followed by DC treatment 141
Specific T cell responses by the combination of IL-2/GM-CSF EGT followed by DC treatment 142
Significant enhancement of radiation by neoadjuvant immunotherapy with IL-2/GM-CSF EGT followed by DC treatment 142
Systemic anti-tumor effect by the combination of IL-2/GM-CSF EGT followed by DC and radiation treatment 143
DISCUSSION 143
REFERENCES 146
FIGURE LEGENDS 149
FIGURE 152
Chapter 6. Cloning and expression of canine CXCL7 and its functional expression in dendritic cells under various maturation
stage 159
ABSTRACT 159
INTRODUCTION 161
MATERIALS AND METHODS 163
Animals and cells PBMC isolation and culture 163
Generation of DC 163
Extraction of RNA from PBMC and DC 164
Reverse transcription of mRNA into cDNA 164
RT-PCR and RACE 165
Expression of CXCL7 in BALB/3T3 cells 166
Primers for Quantitative RT-PCR 166
Quantitative RT-PCR 167
Data analysis 167
Production of rabbit antiserum against CXCL7 168
Western blot analysis 168
Surface-Enhanced Laser Desorption /ionization Time-of-Flight Mass Spectrometry (SELDI-TOF-MS) assay 168
Chemotaxis assay 169
Statistical analysis 171
RESULTS 171
Molecular cloning and analysis of CXCL7 cDNA 171
Eukaryotic expression of CXCL7 172
In vitro bioactivity of CXCL7 172
The expression of CXCL7 in canine DC 173
DC attrack neutrophils under various stimulators 173
DISCUSSION 174
REFERENCE 178
FIGURE LENGEND 182
FIGURE 184
Chapter 7. CXCL7 overexpression is associated with the progression of canine transmissible venereal tumor (CTVT) 191
ABSTRACT 191
INTRODUCTION: 192
MATERIALS AND METHODS: 195
In vivo tumor growth 195
Purification of CTVT cells and tumor infiltrating lymphocytes 195
Extraction of RNA from CTVT 196
Reverse transcription of mRNA into cDNA 196
Primers for Real-time RT-PCR 196
Real-time RT-PCR 197
Western blot analysis 198
Statistical analysis 198
RESULTS: 199
Association between CXCL7 overexpression and growth pattern 199
R phase TIL inhibited the expression of CXCL7 in P phase CTVT cells. 199
The expression of CXCL7 was regulated by IL-6 in CTVT cells. 199
Inhibition of expression of CXCL7 in CTVT cells 200
DISCUSSION: 201
REFERENCE: 204
FIGURE LEGEND 207
FIGURE 209
Chapter 8. Conclusion 213
dc.language.isoen
dc.subject犬zh_TW
dc.subject免疫治療zh_TW
dc.subject細胞激素zh_TW
dc.subjectCXCL7zh_TW
dc.subject犬傳染性花柳性腫瘤zh_TW
dc.subject樹枝狀細胞zh_TW
dc.subjectCTVTen
dc.subjectDendritic cellsen
dc.subjectcanineen
dc.subjectImmunotherapyen
dc.subjectCytokineen
dc.subjectCXCL7en
dc.title腫瘤生長期樹枝狀細胞功能抑制及CXCL7表現之腫瘤微環境影響研究zh_TW
dc.titleThe effect of downregulation of dendritic-cell function and CXCL7 expression in tumor microenvironmrnt during tumoral progressionen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree博士
dc.contributor.coadvisor季匡華(Kwan-Hwa Chi)
dc.contributor.oralexamcommittee張仲明,陶秘華,廖光文
dc.subject.keyword犬,樹枝狀細胞,犬傳染性花柳性腫瘤,CXCL7,細胞激素,免疫治療,zh_TW
dc.subject.keywordDendritic cells,canine,CXCL7,CTVT,Cytokine,Immunotherapy,en
dc.relation.page216
dc.rights.note有償授權
dc.date.accepted2008-07-07
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept獸醫學研究所zh_TW
顯示於系所單位:獸醫學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
2.81 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved