Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37746
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor彭?堅
dc.contributor.authorYou-Chen Changen
dc.contributor.author張祐誠zh_TW
dc.date.accessioned2021-06-13T15:41:40Z-
dc.date.available2008-07-27
dc.date.copyright2008-07-27
dc.date.issued2008
dc.date.submitted2008-07-07
dc.identifier.citation[1] K. Amin. Jump diffusion option valuation in discrete time. J. Finance,
48:1833–1863, 1993.
[2] U. Ascher, S. Ruuth, and R. J. Spiteri. Implicit-explicit Runge-Kutta
methods for time-dependent partial differential equations. Appl. Numer.
Math., 25:151–167, 1997.
[3] A. Bensoussan and J.-L. Lions. Impulse Control and Quasi-Variational Inequalities. Gauthier-Villars, Paris, 1984.
[4] M. Briani, C. La Chioma, and R. Natalini. Convergence of numer-
ical schemes for viscosity solutions to integro-differential degenerate
parabolic problems arising in financial theory. Numer. Math., 98:607–
646, 2004.
[5] M. Briani, R. Natalini, and G. Russo. Implicit-explicit numerical
schemes for jump-diffusion processes. Calcolo., 44:33–57, 2007.
[6] E. Oran Brigham. The Fast Fourier Transform and Its Applications.
Prentice-Hall, Inc., 1988.
[7] J. C. Butcher. Numerical Methods for Ordinary Differential Equations.
John Wiley & Sons, 2003.
[8] R. Cont and P. Tankov. Financial Modelling with Jump Processes. Chap-man & Hall/CRC, 2004.
[9] C. M. Elliott and J. R. Ockendon. Weak and Variational Methods for Moving Boundary Problems. Pitman, Boston, 1982.
[10] P. A. Forsyth and K. R. Vetzal. Quadratic convergence of a penalty method for valuing American options. SIAM J. Sci. Comput., 23:2096– 2123, 2002.
[11] E. Hairer and G. Wanner. Solving Ordinary Differential Equations, Vol.2. Springer-Verlag, New York, 1991.
[12] Y. Halluin, P. A. Forsyth, and G. Labahn. A penalty method for American options with jump diffusion processes. Numer. Math., 97:321– 352, 2004.
[13] R. Merton. Option pricing when underlying stock returns are discontin-uous. J. Financial Economics, 3:125–144, 1976.
[14] L. Pareschi and G. Russo. Implicit-explicit Runge-Kutta schemes for stiff systems of differential equations. Adv. Theory Comput. Math., 3:269– 289, 2001.
[15] L. Pareschi and G. Russo. Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation. SIAM J. Sci. Com-put., 25:129–155, 2005.
[16] W.H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in C: the Art of Scientific Computing. Cambridge University Press: Cambridge, 1992. [17] K.-I. Sato. L´evy Processes and Infinitely Divisible Distributions. Cam-bridge University Press, 1999.
[18] James S. Walker. Fast Fourier Transforms. CRC Press, Inc., 1991.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37746-
dc.description.abstract本篇論文主要是探討如何利用 IMEX 的方法為跳躍市場的選擇權定價。除了一階的方法之外,我們還會探討多階的 Runge-Kutta 方法。最後我們還會以數值的結果來探討利用 Runge-Kutta 方法的優勢所在。zh_TW
dc.description.abstractThis paper mainly discusses how to use the IMEX method to price options on a market with jumps. In addition to the first order method, we will discuss the IMEX Runge-Kutta method which is a higher order scheme. Finally, we will use the numerical examples to discuss the advantage of the IMEX Runge-Kutta method.en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:41:40Z (GMT). No. of bitstreams: 1
ntu-97-R94221033-1.pdf: 298904 bytes, checksum: 1962b9e9580bcddc0c7aef1e2f1bcc76 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents中文摘要 . . i
英文摘要 . . i
第一章 Introduction . . 1
第二章 Jump diffusion model and European option . . 2 2.1 Some background knowledge . . 2
2.2 PIDE for pricing European options in a market with jumps . . 4
2.3 IMEX on PIDE . . 6
2.4 FFT implementation . . 10
第三章 Jump diffusion model and American option:
the first algorithm . . 12
第四章 Jump diffusion model and American option:
IMEX Runge-Kutta scheme . . 17
第五章 Numerical comparison of the two algorithms . . 27
參考文獻 . . 31
dc.language.isoen
dc.subject朗格-古塔的方法zh_TW
dc.subject有限插分方法zh_TW
dc.subject含有跳躍的擴散過程zh_TW
dc.subject隱式-顯式的方法zh_TW
dc.subject無條件地穩定zh_TW
dc.subject快速傅立葉轉換zh_TW
dc.subjectJump diffusion processen
dc.subjectUnconditionally stableen
dc.subjectIMEX methoden
dc.subjectFinite difference methoden
dc.subjectRunge-Kutta schemeen
dc.subjectFast Fourier transformen
dc.title用在跳躍市場的隱式-顯式之定價方法zh_TW
dc.titleIMEX Method For A Market With Jumpsen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳宜良,謝南瑞
dc.subject.keyword有限插分方法,含有跳躍的擴散過程,隱式-顯式的方法,無條件地穩定,快速傅立葉轉換,朗格-古塔的方法,zh_TW
dc.subject.keywordFinite difference method,Jump diffusion process,IMEX method,Unconditionally stable,Fast Fourier transform,Runge-Kutta scheme,en
dc.relation.page32
dc.rights.note有償授權
dc.date.accepted2008-07-07
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
291.9 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved