請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3771
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 鍾孝文 | |
dc.contributor.author | Kung-Chu Ho | en |
dc.contributor.author | 何恭之 | zh_TW |
dc.date.accessioned | 2021-05-13T08:36:37Z | - |
dc.date.available | 2017-02-08 | |
dc.date.available | 2021-05-13T08:36:37Z | - |
dc.date.copyright | 2017-02-08 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2017-01-06 | |
dc.identifier.citation | 1. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. The New England journal of medicine. 2004;350:2129-39.
2. Cappuzzo F, Ciuleanu T, Stelmakh L, Cicenas S, Szczesna A, Juhasz E, et al. Erlotinib as maintenance treatment in advanced non-small-cell lung cancer: a multicentre, randomised, placebo-controlled phase 3 study. The Lancet Oncology. 2010;11:521-9. 3. van Gool MH, Aukema TS, Schaake EE, Rijna H, Valdes Olmos RA, van Pel R, et al. Timing of metabolic response monitoring during erlotinib treatment in non-small cell lung cancer. J Nucl Med. 2014;55:1081-6. 4. Hachemi M, Couturier O, Vervueren L, Fosse P, Lacoeuille F, Urban T, et al. [(1)(8)F]FDG positron emission tomography within two weeks of starting erlotinib therapy can predict response in non-small cell lung cancer patients. PloS one. 2014;9:e87629. 5. Schaake EE, Kappers I, Codrington HE, Valdes Olmos RA, Teertstra HJ, van Pel R, et al. Tumor response and toxicity of neoadjuvant erlotinib in patients with early-stage non-small-cell lung cancer. J Clin Oncol. 2012;30:2731-8. 6. Kobe C, Scheffler M, Holstein A, Zander T, Nogova L, Lammertsma AA, et al. Predictive value of early and late residual 18F-fluorodeoxyglucose and 18F-fluorothymidine uptake using different SUV measurements in patients with non-small-cell lung cancer treated with erlotinib. Eur J Nucl Med Mol Imaging. 2012;39:1117-27. 7. Bengtsson T, Hicks RJ, Peterson A, Port RE. 18F-FDG PET as a surrogate biomarker in non-small cell lung cancer treated with erlotinib: newly identified lesions are more informative than standardized uptake value. J Nucl Med. 2012;53:530-7. 8. Zander T, Scheffler M, Nogova L, Kobe C, Engel-Riedel W, Hellmich M, et al. Early prediction of nonprogression in advanced non-small-cell lung cancer treated with erlotinib by using [(18)F]fluorodeoxyglucose and [(18)F]fluorothymidine positron emission tomography. J Clin Oncol. 2011;29:1701-8. 9. Mileshkin L, Hicks RJ, Hughes BG, Mitchell PL, Charu V, Gitlitz BJ, et al. Changes in 18F-Fluorodeoxyglucose and 18F-Fluorodeoxythymidine Positron Emission Tomography Imaging in Patients with Non-Small Cell Lung Cancer Treated with Erlotinib. Clinical cancer research : an official journal of the American Association for Cancer Research. 2011;17:3304-15. 10. Binns DS, Pirzkall A, Yu W, Callahan J, Mileshkin L, Conti P, et al. Compliance with PET acquisition protocols for therapeutic monitoring of erlotinib therapy in an international trial for patients with non-small cell lung cancer. Eur J Nucl Med Mol Imaging. 2011;38:642-50. 11. Benz MR, Herrmann K, Walter F, Garon EB, Reckamp KL, Figlin R, et al. (18)F-FDG PET/CT for monitoring treatment responses to the epidermal growth factor receptor inhibitor erlotinib. J Nucl Med. 2011;52:1684-9. 12. Aukema TS, Kappers I, Olmos RA, Codrington HE, van Tinteren H, van Pel R, et al. Is 18F-FDG PET/CT useful for the early prediction of histopathologic response to neoadjuvant erlotinib in patients with non-small cell lung cancer? J Nucl Med. 2010;51:1344-8. 13. van Gool MH, Aukema TS, Schaake EE, Rijna H, Codrington HE, Valdes Olmos RA, et al. (18)F-fluorodeoxyglucose positron emission tomography versus computed tomography in predicting histopathological response to epidermal growth factor receptor-tyrosine kinase inhibitor treatment in resectable non-small cell lung cancer. Annals of surgical oncology. 2014;21:2831-7. 14. O'Brien ME, Myerson JS, Coward JI, Puglisi M, Trani L, Wotherspoon A, et al. A phase II study of (1)(8)F-fluorodeoxyglucose PET-CT in non-small cell lung cancer patients receiving erlotinib (Tarceva); objective and symptomatic responses at 6 and 12 weeks. Eur J Cancer. 2012;48:68-74. 15. Suleiman AA, Frechen S, Scheffler M, Zander T, Kahraman D, Kobe C, et al. Modeling tumor dynamics and overall survival in advanced non-small-cell lung cancer treated with erlotinib. J Thorac Oncol. 2015;10:84-92. 16. Kahraman D, Holstein A, Scheffler M, Zander T, Nogova L, Lammertsma AA, et al. Tumor lesion glycolysis and tumor lesion proliferation for response prediction and prognostic differentiation in patients with advanced non-small cell lung cancer treated with erlotinib. Clin Nucl Med. 2012;37:1058-64. 17. de Langen AJ, van den Boogaart V, Lubberink M, Backes WH, Marcus JT, van Tinteren H, et al. Monitoring response to antiangiogenic therapy in non-small cell lung cancer using imaging markers derived from PET and dynamic contrast-enhanced MRI. J Nucl Med. 2011;52:48-55. 18. Cook GJ, O'Brien ME, Siddique M, Chicklore S, Loi HY, Sharma B, et al. Non-Small Cell Lung Cancer Treated with Erlotinib: Heterogeneity of F-FDG Uptake at PET-Association with Treatment Response and Prognosis. Radiology. 2015;0:141309. 19. Winther-Larsen A, Fledelius J, Sorensen BS, Meldgaard P. Metabolic tumor burden as marker of outcome in advanced EGFR wild-type NSCLC patients treated with erlotinib. Lung Cancer. 2016;94:81-7. 20. Young H, Baum R, Cremerius U, Herholz K, Hoekstra O, Lammertsma AA, et al. Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. European Journal of Cancer. 1999;35:1773-82. 21. Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: Evolving Considerations for PET Response Criteria in Solid Tumors. Journal of Nuclear Medicine. 2009;50:122S-50S. 22. Lind JSW, Postmus PE, Smit EF. Osteoblastic Bone Lesions Developing During Treatment with Erlotinib Indicate Major Response in Patients with Non-small Cell Lung Cancer: A Brief Report. Journal of Thoracic Oncology. 2010;5:554-7. 23. Chao HS, Chang CP, Chiu CH, Chu LS, Chen YM, Tsai CM. Bone scan flare phenomenon in non-small-cell lung cancer patients treated with gefitinib. Clin Nucl Med. 2009;34:346-9. 24. Schmid K, Oehl N, Wrba F, Pirker R, Pirker C, Filipits M. EGFR/KRAS/BRAF mutations in primary lung adenocarcinomas and corresponding locoregional lymph node metastases. Clinical cancer research : an official journal of the American Association for Cancer Research. 2009;15:4554-60. 25. Kalikaki A, Koutsopoulos A, Trypaki M, Souglakos J, Stathopoulos E, Georgoulias V, et al. Comparison of EGFR and K-RAS gene status between primary tumours and corresponding metastases in NSCLC. British journal of cancer. 2008;99:923-9. 26. Takahashi K, Kohno T, Matsumoto S, Nakanishi Y, Arai Y, Yamamoto S, et al. Clonal and Parallel Evolution of Primary Lung Cancers and Their Metastases Revealed by Molecular Dissection of Cancer Cells. Clinical Cancer Research. 2007;13:111-20. 27. Marusyk A, Almendro V, Polyak K. Intra-tumour heterogeneity: a looking glass for cancer? Nat Rev Cancer. 2012;12:323-34. 28. Stoecklein NH, Klein CA. Genetic disparity between primary tumours, disseminated tumour cells, and manifest metastasis. International Journal of Cancer. 2010;126:589-98. 29. Klein CA. Parallel progression of primary tumours and metastases. Nat Rev Cancer. 2009;9:302-12. 30. Chen ZY, Zhong WZ, Zhang XC, Su J, Yang XN, Chen ZH, et al. EGFR mutation heterogeneity and the mixed response to EGFR tyrosine kinase inhibitors of lung adenocarcinomas. The oncologist. 2012;17:978-85. 31. Chicklore S, Goh V, Siddique M, Roy A, Marsden PK, Cook GJ. Quantifying tumour heterogeneity in 18F-FDG PET/CT imaging by texture analysis. Eur J Nucl Med Mol Imaging. 2013;40:133-40. 32. Cook GJ, Yip C, Siddique M, Goh V, Chicklore S, Roy A, et al. Are pretreatment 18F-FDG PET tumor textural features in non-small cell lung cancer associated with response and survival after chemoradiotherapy? J Nucl Med. 2013;54:19-26. 33. Hong R, Halama J, Bova D, Sethi A, Emami B. Correlation of PET standard uptake value and CT window-level thresholds for target delineation in CT-based radiation treatment planning. International journal of radiation oncology, biology, physics. 2007;67:720-6. 34. Larson SM, Erdi Y, Akhurst T, Mazumdar M, Macapinlac HA, Finn RD, et al. Tumor Treatment Response Based on Visual and Quantitative Changes in Global Tumor Glycolysis Using PET-FDG Imaging: The Visual Response Score and the Change in Total Lesion Glycolysis. Clinical Positron Imaging. 1999;2:159-71. 35. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). European Journal of Cancer. 2009;45:228-47. 36. Amadasun M, King R. Textural features corresponding to textural properties. Systems, Man and Cybernetics, IEEE Transactions on. 1989;19:1264-74. 37. Fang YH, Lin CY, Shih MJ, Wang HM, Ho TY, Liao CT, et al. Development and evaluation of an open-source software package 'CGITA' for quantifying tumor heterogeneity with molecular images. BioMed research international. 2014;2014:248505. 38. Ho KC, Fang YD, Chung HW, Liu YC, Chang JW, Hou MM, et al. TLG-S criteria are superior to both EORTC and PERCIST for predicting outcomes in patients with metastatic lung adenocarcinoma treated with erlotinib. Eur J Nucl Med Mol Imaging. 2016;43:2155-65. 39. Fogelman I. The flare phenomenon: still learning after 35 years. European Journal of Nuclear Medicine and Molecular Imaging. 2011;38:5-6. 40. Krupitskaya Y, Eslamy HK, Nguyen DD, Kumar A, Wakelee HA. Osteoblastic Bone Flare on F18-FDG PET in Non-small Cell Lung Cancer (NSCLC) Patients Receiving Bevacizumab in Addition to Standard Chemotherapy. Journal of Thoracic Oncology. 2009;4:429-31. 41. Al-Nabhani K, Syed R, Haroon A, Almukhailed O, Bomanji J. Flare response versus disease progression in patients with non-small cell lung cancer. Journal of radiology case reports. 2012;6:34-42. 42. Jamal-Hanjani M, Quezada SA, Larkin J, Swanton C. Translational Implications of Tumor Heterogeneity. Clinical Cancer Research. 2015;21:1258-66. 43. Yatabe Y, Matsuo K, Mitsudomi T. Heterogeneous distribution of EGFR mutations is extremely rare in lung adenocarcinoma. J Clin Oncol. 2011;29:2972-7. 44. Vignot S, Frampton GM, Soria JC, Yelensky R, Commo F, Brambilla C, et al. Next-generation sequencing reveals high concordance of recurrent somatic alterations between primary tumor and metastases from patients with non-small-cell lung cancer. J Clin Oncol. 2013;31:2167-72. 45. Thomas A, Rajan A, Lopez-Chavez A, Wang Y, Giaccone G. From targets to targeted therapies and molecular profiling in non-small cell lung carcinoma. Annals of Oncology. 2013;24:577-85. 46. Taniguchi K, Okami J, Kodama K, Higashiyama M, Kato K. Intratumor heterogeneity of epidermal growth factor receptor mutations in lung cancer and its correlation to the response to gefitinib. Cancer science. 2008;99:929-35. 47. Orlhac F, Soussan M, Maisonobe J-A, Garcia CA, Vanderlinden B, Buvat I. Tumor Texture Analysis in 18F-FDG PET: Relationships Between Texture Parameters, Histogram Indices, Standardized Uptake Values, Metabolic Volumes, and Total Lesion Glycolysis. Journal of Nuclear Medicine. 2014;55:414-22. 48. Nyflot MJ, Yang F, Byrd D, Bowen SR, Sandison GA, Kinahan PE. Quantitative radiomics: impact of stochastic effects on textural feature analysis implies the need for standards. Journal of medical imaging. 2015;2:041002. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3771 | - |
dc.description.abstract | 目的: 本研究在探討利用葡萄糖正子掃描評估轉移性肺腺癌接受得紓緩標靶藥物治療之早期反應,以TLG-S方法是否比EORTC標準與PERCIST標準更能有效預測病患之預後。此研究的假設是源自於原發腫瘤與轉移腫瘤的生物特性差異以及骨骼顯像上的復燃現象。此外,腫瘤影像上的紋理特性對於疾病預後的價值也進行探討。
方法: 我們回溯性分析前瞻性收集的23位接受得紓緩治療之轉移性肺腺癌病患。每位受試者都接受葡萄糖正子掃描於給藥前,給藥第14日,與給藥第56日。診斷性電腦斷層於給藥前與給藥第56日施行。葡萄糖正子掃描的反應評估利用TLG-S、EORTC與PERCIST標準進行。 電腦斷層的RECIST 1.1標準作為治療反應的比較基準。影像紋理特性分析了coarseness、contrast、busyness、complexity與strength參數。兩年無惡化存活期與整體存活期作為疾病預後的評估指標。 結果: 我們發現13位病患有骨骼轉移。其中4位(31%)在給藥第14日有發生骨骼顯像上的復燃現象,依據PERCIST標準被誤判為藥物不反應組。依據給藥第14日TLG-S標準被歸為藥物有反應組之病患,擁有較高的兩年無惡化存活期(26.7% vs. 0%, P = 0.007) 與整體存活期(40.0% vs. 7.7%, P = 0.018)。依據給藥第56日電腦斷層RECIST 標準也呈現相同的存活期。依據給藥第14日EORTC標準被歸為藥物有反應組之病患,擁有較高的兩年整體存活期(36.4% vs. 8.3%, P = 0.015)。早期busyness參數的變化在無惡化存活期有顯著意義(P = 0.004) 且早期coarseness參數的變化在無惡化存活期(P = 0.007)及整體存活期(P = 0.037) 有顯著意義。參數busyness與coarseness變化與腫瘤體積變化呈現相關性(r = 0.835 and r = -0.368)。 結論: 利用PERCIST標準評估轉移性肺腺癌接受得紓緩治療反應時,骨骼顯像上的復燃現象可能會影響判讀。此時,TLG-S標準用於評估病患預後可能有較佳的幫助。對於影像紋理特性在疾病預後的解讀必須謹慎。 | zh_TW |
dc.description.abstract | Abstract
Purpose: In this prospective study, we sought to investigate whether early FDG-PET assessment of treatment response using total lesion glycolysis measured with a systemic approach (TLG-S) could be superior to either local assessment with EORTC (European Organization for Research and Treatment of Cancer) criteria or single-lesion assessment with PERCIST (PET Response Criteria in Solid Tumors) for predicting clinical outcomes in patients with metastatic lung adenocarcinoma treated with erlotinib. The study hypothesis originated from the potential occurrence of the flare phenomenon and the differences in tumor biology between primary malignant cells and their metastasized progenies. In addition, the prognostic value of tumor textural features was investigated. Methods: We performed a retrospective review of prospectively collected data from 23 patients with metastatic lung adenocarcinoma treated with erlotinib. All participants underwent FDG-PET imaging at baseline and on days 14 and 56 after completion of erlotinib treatment. In addition, CT scans were performed at baseline and on day 56. FDG-PET response was assessed with TLG-S, EORTC, and PERCIST criteria. Response assessment based on RECIST 1.1 (Response Evaluation Criteria in Solid Tumors) from CT imaging was used as the reference standard. Regional textural features were analyzed using neighborhood grey-tone difference matrix with parameters of coarseness, contrast, busyness, complexity, and strength. Two-year progression-free survival (PFS) and overall survival (OS) served as the main outcome measures. Results: We identified 13 patients with bone metastases. Of them, four (31%) had bone flares at day 14 and were erroneously classified as non-responders according to the PERCIST criteria. Patients who were classified as responders on day 14 based on TLG-S criteria had higher 2-year PFS (26.7% vs. 0%, P = 0.007) and OS (40.0% vs. 7.7%, P = 0.018) rates. Similar rates were observed in patients who responded on day 56 according to the RECIST criteria based on CT imaging. Patients classified as responders on day 14 according to the EORTC criteria on FDG-PET imaging had a better 2-year OS rate compared with non-responders (36.4% vs. 8.3%, P = 0.015). The early change of busyness showed significantly better PFS (P = 0.004) and the coarseness change demonstrated significantly better outcomes in PFS (P = 0.007) and OS (P = 0.037). The busyness and coarseness changes were correlated with tumor volume changes (r = 0.835 and r = -0.368). Conclusions: Bone flares that can interfere with the interpretation of treatment response according to the PERCIST criteria are not uncommon in patients with metastatic lung adenocarcinoma treated with erlotinib. In this scenario, TLG-S criteria may help to better predict survival outcomes than other forms of assessment. Interpretation of textural features for prognosis should be cautious. | en |
dc.description.provenance | Made available in DSpace on 2021-05-13T08:36:37Z (GMT). No. of bitstreams: 1 ntu-105-D98945005-1.pdf: 2157112 bytes, checksum: 7b810d8ea0d8e7ab07c1a3839908489b (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 口試委員會審定書.....i
中文摘要.....ii 英文摘要.....iii 1. INTRODUCION.....1 1.1 Erlotinib and gene mutation in lung cancer.....1 1.2 FDG-PET for erlotinib response assessment.....1 1.3 Bone flares in FDG-PET response.....1 1.4 The effect of tumor heterogeneity on drug response.....1 1.5 Textural analysis for tumor heterogeneity.....2 1.6 Study aims.....2 2. MATERIALS AND METHODS.....2 2.1 Patients.....2 2.2 Study Design.....3 2.3 FDG-PET/CT Image Acquisition.....3 2.4 Imaging Analysis and Assessment of Treatment Response.....4 2.4.1 PET parameters.....4 2.4.2 EORTC criteria.....4 2.4.3 PERCIST criteria.....4 2.4.4 TLG-S method.....5 2.4.5 RECIST criteria.....5 2.5 Texture analysis.....5 2.6 Statistical Analysis.....6 3. RESULTS.....6 3.1 Patients.....6 3.2 Response on FDG-PET versus CT imaging according to the RECIST criteria.....6 3.3 Impact of bone flares on early assessment of treatment response on FDG-PET images using the PERCIST criteria.....10 3.4 Prediction of progression-free survival.....11 3.5 Prediction of overall survival.....11 3.6 Textural parameters for survival prediction.....14 4. DISCUSSION.....15 4.1 Why the results of PERCIST criteria is inconsistent with other groups?.....15 4.2 The effects of bone flare.....16 4.3 Tumor heterogeneity: systemic approach vs. local assessment.....16 4.4 Proposed TLG-S method.....17 4.5 Impact of tumor heterogeneity.....17 4.6 Limitation of textural analysis in current study.....18 5. CONCLUSIONS.....18 參考文獻.....19 | |
dc.language.iso | en | |
dc.title | 利用葡萄糖正子掃描評估早期治療反應來預測轉移性肺腺癌病患接受得紓緩標靶藥物之預後 | zh_TW |
dc.title | FDG-PET in early response assessment for predicting outcomes in patients with metastatic lung adenocarcinoma treated with erlotinib. | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 吳文超,閻紫宸,陳志成,方佑華,許靖涵 | |
dc.subject.keyword | 肺癌,得紓緩,葡萄糖正子掃描,腫瘤反應,存活期,預後,紋理分析, | zh_TW |
dc.subject.keyword | Lung cancer,erlotinib,FDG-PET,tumor response,survival,outcomes,textural analysis, | en |
dc.relation.page | 22 | |
dc.identifier.doi | 10.6342/NTU201700024 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2017-01-06 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
顯示於系所單位: | 生醫電子與資訊學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf | 2.11 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。