請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37717完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉子銘(Tzu-Ming Liu) | |
| dc.contributor.author | Fu-Lien Huang | en |
| dc.contributor.author | 黃甫簾 | zh_TW |
| dc.date.accessioned | 2021-06-13T15:40:11Z | - |
| dc.date.available | 2016-08-15 | |
| dc.date.copyright | 2011-08-15 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-10 | |
| dc.identifier.citation | References:
[1] M. Biesaga, et al., 'Porphyrins in analytical chemistry. A review,' Talanta, vol. 51, pp. 209-224, 2000. [2] E. B. Fleischer, 'Structure of porphyrins and metalloporphyrins,' Accounts of Chemical Research, vol. 3, pp. 105-112, 1970. [3] K. Nagai, et al., 'Oxygen binding properties of human mutant hemoglobins synthesized in Escherichia coli,' Proceedings of the National Academy of Sciences, vol. 82, pp. 7252-7255, November 1, 1985 1985. [4] B. J. Reeder, et al., 'The radical and redox chemistry of myoglobin and hemoglobin: from in vitro studies to human pathology,' Antioxidants & Redox Signaling, vol. 6, pp. 954-966, 2004. [5] V. P. Skulachev, 'Cytochrome c in the apoptotic and antioxidant cascades,' FEBS Letters, vol. 423, pp. 275-280, 1998. [6] J. Wakamatsu, et al., 'A Zn-porphyrin complex contributes to bright red color in Parma ham,' Meat Science, vol. 67, pp. 95-100, 2004. [7] B. M. Chereskin and P. A. Castelfranco, 'Effects of Iron and Oxygen on Chlorophyll Biosynthesis : II. OBSERVATIONS ON THE BIOSYNTHETIC PATHWAY IN ISOLATED ETIOCHLOROPLASTS,' Plant Physiology, vol. 69, pp. 112-116, January 1, 1982 1982. [8] M. A. Huynen, et al., 'Variation and evolution of the citric-acid cycle: a genomic perspective,' Trends in Microbiology, vol. 7, pp. 281-291, 1999. [9] T. Li and J. S. Woods, 'Cloning, Expression, and Biochemical Properties of CPOX4, a Genetic Variant of Coproporphyrinogen Oxidase that Affects Susceptibilitly to Mercury Toxicity in Humans,' Toxicological Sciences, vol. 109, pp. 228-236, June 1, 2009 2009. [10] F. de Oliveira Silva, et al., 'Intrinsic Fluorescence of Protoporphyrin IX from Blood Samples Can Yield Information on the Growth of Prostate Tumours,' Journal of Fluorescence, vol. 20, pp. 1159-1165, 2010. [11] M. Idrish Miah, 'Correlation of protoporphyrin metabolism in cell proliferation with embryonic development time: A spectroscopic investigation,' Optik - International Journal for Light and Electron Optics, vol. 120, pp. 980-983, 2009. [12] K. Onizawa, et al., 'Characterization of autofluorescence in oral squamous cell carcinoma,' Oral Oncol, vol. 39, pp. 150-6, Feb 2003. [13] D.-S. Hyun, et al., 'A preliminary study of protoporphyrin-IX as a potential candidate for identification of lung cancer cells using fluorescence microscopy,' Photodiagnosis and Photodynamic Therapy, vol. 6, pp. 221-226. [14] K. T. Moesta, et al., 'Protoporphyrin IX occurs naturally in colorectal cancers and their metastases,' Cancer Res, vol. 61, pp. 991-9, Feb 1 2001. [15] X. Schneider-Yin, et al., 'Hypericin and 5-aminolevulinic acid-induced protoporphyrin IX induce enhanced phototoxicity in human endometrial cancer cells with non-coherent white light,' Photodiagnosis Photodyn Ther, vol. 6, pp. 12-8, Mar 2009. [16] Z. Jia and X. Wan, 'Concentration of protoporphyrin IX in cancer tissues and blood in patients with colorectal cancer at early stage,' Zhong Nan Da Xue Xue Bao Yi Xue Ban, vol. 34, pp. 846-9, Sep 2009. [17] J. Tyrrell, et al., 'Monitoring the accumulation and dissipation of the photosensitizer protoporphyrin IX during standard dermatological methyl-aminolevulinate photodynamic therapy utilizing non-invasive fluorescence imaging and quantification,' Photodiagnosis and Photodynamic Therapy, vol. 8, pp. 30-38, 2011. [18] D. Zaak, et al., 'Photodynamic Therapy by Means of 5-ALA Induced PPIX in Human Prostate Cancer - Preliminary Results,' Medical Laser Application, vol. 18, pp. 91-95, 2003. [19] R. F. V. Lopez, et al., 'Photodynamic therapy of skin cancer: controlled drug delivery of 5-ALA and its esters,' Advanced Drug Delivery Reviews, vol. 56, pp. 77-94, 2004. [20] P. Steinbach, et al., 'CELLULAR FLUORESCENCE OF THE ENDOGENOUS PHOTOSENSITIZER PROTOPORPHYRIN IX FOLLOWING EXPOSURE TO 5-AMINOLEVULINIC ACID,' Photochemistry and Photobiology, vol. 62, pp. 887-895, 1995. [21] T. Rutherford, et al., 'Heme biosynthesis in Friend erythroleukemia cells: control by ferrochelatase.,' Proc Natl Acad Sci U S A, vol. 76, pp. 833–836, 1979. [22] M. M. el-Sharabasy, et al., 'Porphyrin metabolism in some malignant diseases,' Br J Cancer., vol. 65, pp. 409-412, Br J Cancer. [23] R. Kachadourian, et al., 'High-performance liquid chromatography with spectrophotometric and electrochemical detection of a series of manganese(III) cationic porphyrins,' Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, vol. 767, pp. 61-67, 2002. [24] M. Inaguma and Kenji Hashimoto, 'Porphyrin-like fluorescence in oral cancer,' cancer vol. 86, pp. 2201-2211, 1999. [25] W. Kemmner, et al., 'Silencing of human ferrochelatase causes abundant protoporphyrin-IX accumulation in colon cancer,' The FASEB Journal, vol. 22, pp. 500-509, February 1, 2008 2008. [26] L. Andersson and J. Porath, 'Isolation of phosphoproteins by immobilized metal (Fe3+) affinity chromatography,' Analytical Biochemistry, vol. 154, pp. 250-254, 1986. [27] H. Zhou, et al., 'Specific Phosphopeptide Enrichment with Immobilized Titanium Ion Affinity Chromatography Adsorbent for Phosphoproteome Analysis,' Journal of Proteome Research, vol. 7, pp. 3957-3967, 2008. [28] Y.-C. Li, et al., 'Nitrilotriacetic Acid-Coated Magnetic Nanoparticles as Affinity Probes for Enrichment of Histidine-Tagged Proteins and Phosphorylated Peptides,' Analytical Chemistry, vol. 79, pp. 7519-7525, 2007. [29] C.-K. Chang, et al., 'Selective Extraction and Enrichment of Multiphosphorylated Peptides Using Polyarginine-Coated Diamond Nanoparticles,' Analytical Chemistry, vol. 80, pp. 3791-3797, 2008. [30] N. L. Rosi and C. A. Mirkin, 'Nanostructures in Biodiagnostics,' Chemical Reviews, vol. 105, pp. 1547-1562, 2005. [31] P. Gould, 'Nanoparticles probe biosystems ' Materials Today pp. 36-43, 2004 [32] H.-T. Wu, et al., 'Nanoprobe-based immobilized metal affinity chromatography for sensitive and complementary enrichment of multiply phosphorylated peptides,' Proteomics, vol. 11, pp. 2639-2653, 2011. [33] A.-H. Lu, et al., 'Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application,' Angewandte Chemie International Edition, vol. 46, pp. 1222-1244, 2007. [34] A. L. Willis, et al., 'Spectroscopic Characterization of the Surface of Iron Oxide Nanocrystals,' Chemistry of Materials, vol. 17, pp. 5970-5975, 2005. [35] Y.-S. Li, et al., 'Preparation and characterization of silica coated iron oxide magnetic nano-particles,' Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 76, pp. 484-489, 2010. [36] P.-H. Chou, et al., 'Nanoprobe-Based Affinity Mass Spectrometry for Selected Protein Profiling in Human Plasma,' Analytical Chemistry, vol. 77, pp. 5990-5997, 2005. [37] K.-Y. Wang, et al., 'Multiplexed Immunoassay: Quantitation and Profiling of Serum Biomarkers Using Magnetic Nanoprobes and MALDI-TOF MS,' Analytical Chemistry, vol. 80, pp. 6159-6167, 2008. [38] L.-S. Huang, et al., 'Nanoprobe-Based Affinity Mass Spectrometry for Cancer Marker Protein Profiling,' in Nanotechnologies for the Life Sciences, ed: Wiley-VCH Verlag GmbH & Co. KGaA, 2007. [39] P.-C. Lin, et al., 'Ethylene Glycol-Protected Magnetic Nanoparticles for a Multiplexed Immunoassay in Human Plasma,' Small, vol. 2, pp. 485-489, 2006. [40] Y. Lu, et al., 'Modifying the Surface Properties of Superparamagnetic Iron Oxide Nanoparticles through A Sol−Gel Approach,' Nano Letters, vol. 2, pp. 183-186, 2002. [41] J. G. Pastorino, et al., 'Protoporphyrin IX, an endogenous ligand of the peripheral benzodiazepine receptor, potentiates induction of the mitochondrial permeability transition and the killing of cultured hepatocytes by rotenone,' Journal of Biological Chemistry, vol. 269, pp. 31041-31046, December 9, 1994 1994. [42] K. M. Hebeda, et al., '5-Aminolevulinic Acid Induced Endogenous Porphyrin Fluorescence in 9L and C6 Brain Tumours and in the Normal Rat Brain,' Acta Neurochirurgica, vol. 140, pp. 503-513, 1998. [43] E. G. Mik, et al., 'Mitochondrial PO2 measured by delayed fluorescence of endogenous protoporphyrin IX,' Nat Meth, vol. 3, pp. 939-945, 2006. [44] J. C. Kennedy and R. H. Pottier, 'New trends in photobiology: Endogenous protoporphyrin IX, a clinically useful photosensitizer for photodynamic therapy,' Journal of Photochemistry and Photobiology B: Biology, vol. 14, pp. 275-292, 1992. [45] Z. Gryczynski, et al., 'LINEAR DICHROISM STUDY OF METALLOPORPHYRIN TRANSITION MOMENTS IN VIEW OF RADIATIONLESS INTERACTIONS WITH TRYPTOPHAN IN HEMOPROTEINS,' Photochemistry and Photobiology, vol. 58, pp. 492-498, 1993. [46] Y. Hu, et al., 'Potential of protoporphyrin IX and metal derivatives for single molecule,' Luminescence, vol. 131, pp. 477-481, 2011. [47] D. A. Brisbin and G. D. Richards, 'Kinetics of the reaction of some first-row transition metals with protoporphyrin IX dimethyl ester,' Inorganic Chemistry, vol. 11, pp. 2849-2850, 1972. [48] C. Raja, et al., 'Studies on the photophysical characteristics of poly(carboxylic acid)s bound protoporphyrin IX and metal complexes of protoporphyrin IX,' European Polymer Journal, vol. 42, pp. 495-506, 2006. [49] G. Anderegg, 'Critical survey of stability constants of NTA complexes,' Pure and Applied Chemistry, vol. 54, pp. 2693-2758, 1982. [50] A. Bunescu, et al., 'Fate of the Nitrilotriacetic Acid-Fe(III) Complex during Photodegradation and Biodegradation by Rhodococcus rhodochrous,' Appl. Environ. Microbiol., vol. 74, pp. 6320-6326, October 15, 2008 2008. [51] W. R. Harris, et al., 'Equilibrium Constants for the Binding of Indium(III) to Human Serum Transferrin,' Inorganic Chemistry, vol. 33, pp. 4991-4998, 1994. [52] T. FIELD and W. A. E. MCBRYDE, 'Apparent stability constants of proton and metal ion complexes of glycine, iminodiacetic acid, nitrilotriacetic acid, and triethylenetetramine in aqueous methanol.,' Can J Chem, vol. 59, pp. 555-558, 1981. [53] A. Baraka, et al., 'Melamine-formaldehyde-NTA chelating gel resin: Synthesis, characterization and application for copper(II) ion removal from synthetic wastewater,' Journal of Hazardous Materials, vol. 140, pp. 86-94, 2007. [54] C. D. Klaassen, et al., 'Alteration of tissue disposition of cadmium by chelating agents,' Environ Health Perspect, vol. 54, 1984. [55] T. Stora, et al., 'Metal Ion Trace Detection by a Chelator-Modified Gold Electrode: A Comparison of Surface to Bulk Affinity,' Langmuir, vol. 13, pp. 5211-5214, 1997. [56] E. Mentasti, 'Metal-exchange reactions between cobalt(II) and lead(II) complexes of nitrilotriacetic acid and copper(II),' Journal of the Chemical Society, Dalton Transactions, pp. 721-725, 1982. [57] J. S. Kim, et al., 'Highly-Efficient Purification of Native Polyhistidine-Tagged Proteins by Multivalent NTA-Modified Magnetic Nanoparticles,' Bioconjugate Chemistry, vol. 18, pp. 333-341, 2007. [58] T. Kiss, et al., 'Cupric ion binding by dihydroxybenzoic acids,' Polyhedron, vol. 8, pp. 647-651, 1989. [59] J. Xu and R. B. Jordan, 'Kinetics and mechanism of the oxidation of 2,3-dihydroxybenzoic acid by iron(III),' Inorganic Chemistry, vol. 27, pp. 4563-4566, 1988. [60] E. A. Schonberger and W. F. Pickering, 'The influence of pH and complex formation on the ASV peaks of Pb, Cu and Cd,' Talanta, vol. 27, pp. 11-18, 1980. [61] K. Majlesi, et al., 'Dependence on Ionic Strength of Formation Constants, Protonation, and Complexation of Nitrilotriacetic Acid with Tungsten(VI) in Sodium Perchlorate Aqueous Solution,' Journal of Chemical & Engineering Data, vol. 49, pp. 439-443, 2004. [62] P. G. Daniele, et al., 'Ionic strength dependence of formation constants. Alkali metal complexes of ethylenediaminetetraacetate nitrilotriacetate, diphosphate, and tripolyphosphate in aqueous solution,' Analytical Chemistry, vol. 57, pp. 2956-2960, 1985. [63] K. Majlesi, et al., 'Ionic Strength Dependence of Formation Constants, Protonation, and Complexation of Nitrilotriacetic Acid with Molybdenum(VI),' Journal of Chemical & Engineering Data, vol. 48, pp. 680-683, 2003. [64] B. Mohammadi and J. Mohammadi, 'Solvent Effects on Complexation of Molybdenum(VI) with Nitrilotriacetic Acid in Different Aqueous Solutions of Propanol,' Chinese Journal of Chemistry, vol. 25, pp. 284-288, 2007. [65] C.-F. Tsai, et al., 'Immobilized Metal Affinity Chromatography Revisited: pH/Acid Control toward High Selectivity in Phosphoproteomics,' Journal of Proteome Research, vol. 7, pp. 4058-4069, 2008. [66] D. L. Rabenstein and R. J. Kula, 'Ligand-exchange kinetics and solution equilibriums of cadmium, zinc, and lead nitrilotriacetate complexes,' Journal of the American Chemical Society, vol. 91, pp. 2492-2503, 1969. [67] J. G. Hering and F. M. M. Morel, 'Kinetics of trace metal complexation: ligand-exchange reactions,' Environmental Science & Technology, vol. 24, pp. 242-252, 1990. [68] J. G. Hering and F. M. M. Morel, 'Kinetics of trace metal complexation: role of alkaline-earth metals,' Environmental Science & Technology, vol. 22, pp. 1469-1478, 1988. [69] K. Zavitsanos and A. L. Petrou, 'Kinetics and Mechanisms of the Chromium(III) Reactions with 2,4- and 2,5-Dihydroxybenzoic Acids in Weak Acidic Aqueous Solutions,' Bioinorganic Chemistry and Applications, vol. 2010, p. 10, 2010. [70] L. Cun and R. B. Jordan, 'Kinetics and mechanism of the linkage isomerism in the nickel(II)-2,3-dihydroxybenzoate system,' Inorganic Chemistry, vol. 29, pp. 2937-2940, 1990. [71] D. Inniss, et al., 'The electronic structure of highly anisotropic low-spin ferric porphyrin complexes based on single-crystal EPR measurements,' Journal of the American Chemical Society, vol. 110, pp. 5644-5650, 1988. [72] C. T. Migita and M. Iwaizumi, 'Low-temperature EPR studies of highly anisotropic low-spin (protoporphyrinato)iron(III) complexes,' Journal of the American Chemical Society, vol. 103, pp. 4378-4381, 1981. [73] G. McCombie and R. Knochenmuss, 'Enhanced MALDI Ionization Efficiency at the Metal-Matrix Interface: Practical and Mechanistic Consequences of Sample Thickness and Preparation Method,' Journal of the American Society for Mass Spectrometry, vol. 17, pp. 737-745, 2006. [74] R. Skelton, et al., 'A MALDI Sample Preparation Method Suitable for Insoluble Polymers,' Analytical Chemistry, vol. 72, pp. 1707-1710, 2000. [75] R. Knochenmuss, et al., 'Ion Yields of Thin MALDI Samples: Dependence on Matrix and Metal Substrate and Implications for Models,' The Journal of Physical Chemistry A, vol. 110, pp. 12728-12733, 2006. [76] M. D and G. R., 'Desorption from metal surfaces by low-energy electrons. ,' chemical physics, vol. 41, pp. 3311-3328, 1964. [77] V. Frankevich, et al., 'The origin of electrons in MALDI and their use for sympathetic cooling of negative ions in FTICR,' International Journal of Mass Spectrometry, vol. 220, pp. 11-19, 2002. [78] V. E. Frankevich, et al., 'Role of Electrons in Laser Desorption/Ionization Mass Spectrometry,' Analytical Chemistry, vol. 75, pp. 6063-6067, 2003. [79] R. Knochenmuss, 'Photoionization Pathways and Free Electrons in UV-MALDI,' Analytical Chemistry, vol. 76, pp. 3179-3184, 2004. [80] R. Knochenmuss, et al., 'The Matrix Suppression Effect and Ionization Mechanisms in Matrix-assisted Laser Desorption/Ionization,' Rapid Communications in Mass Spectrometry, vol. 10, pp. 871-877, 1996. [81] B. O. Keller, et al., 'Interferences and contaminants encountered in modern mass spectrometry,' Analytica Chimica Acta, vol. 627, pp. 71-81, 2008. [82] L. M. Scolaro, et al., 'Aggregation Behavior of Protoporphyrin IX in Aqueous Solutions: Clear Evidence of Vesicle Formation,' The Journal of Physical Chemistry B, vol. 106, pp. 2453-2459, 2002. [83] T. M. Annesley, 'Ion Suppression in Mass Spectrometry,' Clinical Chemistry, vol. 49, pp. 1041-1044, 2003. [84] C. S. Betz, et al., 'A comparative study of normal inspection, autofluorescence and 5-ALA-induced PPIX fluorescence for oral cancer diagnosis,' International Journal of Cancer, vol. 97, pp. 245-252, 2002. [85] S. Utsuki, et al., 'Fluorescence-guided resection of metastatic brain tumors using a 5-aminolevulinic acid-induced protoporphyrin IX: pathological study,' Brain Tumor Pathology, vol. 24, pp. 53-55, 2007. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37717 | - |
| dc.description.abstract | 紫質(Protoporphyrins)在身體代謝中扮演重要的角色,積累在腫瘤組織中的紫質為癌症的生物指標。然而,紫質在人體的癌症組織或細胞中含量很低,傳統偵測紫質方法不具足夠靈敏度以分析紫質。在此論文中,我們發展一個結合功能化磁性奈米粒子和質譜技術的新策略,能夠同時萃取和偵測紫質。
我們合成表面裝載三甘胺酸的功能化磁性奈米粒子,然後敖合鐵金屬離子,藉由鐵金屬離子和紫質中四個吡咯(pyrrole)環上的氮原子之間的親和力作用作為純化工具。使用紫質(protoporphyrins)標準品為模型,我們測試了奈米粒子在水溶液中萃取紫質的最佳化條件。測試結果顯示,使用60μg的奈米粒子能夠萃取0.1 nmole 紫質。奈米粒子萃取方法條件最佳化後,結合基質輔助雷射游離脫附質譜法(MALDI-TOF MS)能夠偵測到水溶液中紫質的(protoporphyrins)偵測極限(LOD)為10 nM。相對於傳統的高效液相層析法和螢光技術,奈米粒子能夠快速萃取紫質。為了評估此方法能夠在複雜的樣品中萃取紫質,我們挑選了有自然發生存在紫質的大腸細胞(CT26),並且加入標準品紫質,目前提供的檢測靈敏性為500nM 的紫質。因此,利用磁性奈米粒子結合質譜技術的靈敏性與快速性,本論文發展的新技術可應用於這些紫質的快速分析。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2021-06-13T15:40:11Z (GMT). No. of bitstreams: 1 ntu-100-R98548032-1.pdf: 4990831 bytes, checksum: feb97cf9354d0c8b1eb1f8b46c3deb4d (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 口試委員會審定書...........................................I
致謝..................................................... II 中文摘要..................................................IV Abstract ..................................................V Table of Contents .......................................VII List of Figures............................................X List of Tables .........................................XIII Abbreviation.............................................XIV CHAPTER 1 INTRODUCTION ................................... 1 1-1 Chemistry of Porphyrins............................... 1 1-1-1 Chemical structure of Porphyrins ....................1 1-1-1Biochemistry of Porphyrins .......................... 2 1-2 Clinical Aspects of Porphyrins.........................3 1-3Conventional Method for Porphyrins Analysis............ 5 1-3-1 Liquid Chromatography Analysis of Porphyrins........ 5 1-3-2 Fluorescence Analysis of Porphyrins................. 6 1-4 Thesis Motivation and Objectives...................... 7 CHAPTER 2 PRINCIPLES...................................... 9 2-1 Principle of Mass Spectrometry........................ 9 2-1-1 Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry ............. ...............................10 2-2 Extraction of Porphyrins by Magnet Metal Immobilized Nanoparticle .............................................12 2-2-1 Immobilized Metal Affinity Chromatography ..........12 2-2-2 Magnetic Nano-Materials for Puification of Phosphopeptides ......................................... 13 2-2-3 NTA-PEG@MNP for Enrichment of Porphyrin ........... 14 CHAPTER 3 MATERIALS AND METHODS.......................... 16 3-1 Fabrication of NTA-PEG@MNP............................16 3-1-1 Synthesis of Fe3O4@MNP............................. 16 3-1-2 Surface Blocking by PEG.............................16 3-1-3 Preparation of NTA-PEG@MNP. ....................... 17 3-2 Cell Culture......................................... 17 3-3 Cell Lysis. ......................................... 18 3-4 MALDI-TOF MS Analysis................................ 18 3-5 Enrichment of Protoporphyrin IX Using Fe3+-NTA-PEG@MNP.................................................. 19 3-5-1 General Protocol of Extraction Protoporphyrin IX... 19 3-5-2 Optimization of Extraction Protocol................ 20 3-5-2-1 Survey Suitable Metal Ion for the Binding on NTA-PEG@MNP ................................................. 20 3-5-2-2 pH Effects on Binding............................ 21 3-5-2-3 Effects of Ionic Medium on Binding............... 21 3-5-2-4 Reaction Time for Binding........................ 22 3-5-2-5 Targeting Capacity of NTA-PEG@MNP on PpIX ....... 22 3-5-2-6 Enrichment Efficiency of Fe3+-NTA-PEG@MNPs in Different Concentration.................................. 22 3-5-3 Optimization of MS Detection Condition............. 23 3-5-3-1 Invesitgate On-particle vs Elution with EDTA..... 23 3-5-3-2 Evaluate pH Effect on MS Detection............... 24 3-5-3-3 Effect of Elution Buffers for Facile PpIX Release.................................................. 25 3-5-3-4 Effect of Elution Buffer Concentration on Facile PpIX Release ............................................ 25 CHAPTER 4 Results and Discussion......................... 27 4-1 Fabrication and Characterization of NTA-PEG@MNP...... 27 4-2 Magnetic NTA-based Affinity Isolation for the Quantification of Porphyrins..............................29 4-2-1 Improved Detection of PpIX using Fe3+-activated NTA-PEG@MNP.................................................. 31 4-2-2 Optimization of Charging of Metal Ions on NTA-PEG@MNP.................................................. 32 4-2-2-1 Activation of NTA-PEG@MNP with Transition Metals. 33 4-2-2-2 Effect of pH on Binding of PpIX with Fe3+-activated NTA-PEG@MNP.............................................. 35 4-2-2-3 Effect of Ionic Medium........................... 37 4-2-2-4 Effect of Incubation Time........................ 39 4-2-2-5 Capacity of NTA-PEG@MNP.......................... 41 4-3 Optimization of Detection and Ionization of Protoporphyrin IX by NTA-PEG@MNP and MALDI-TOF MS.........43 4-3-2 Optimization of Elution of PpIX by Competition Molecule ................................................ 44 4-4 Concentration Effect................................. 47 4-5 Sensitivity of On-particle Detection with Fe3+-activated NTA-PEG@MNP.....................................48 4-6 Extraction and Detection of PpIX from CT26 Colorectal Cancer Cell.............................................. 50 CHAPTER 5 CONCLUSION..................................... 54 References: ............................................. 56 | |
| dc.language.iso | en | |
| dc.subject | 質譜 | zh_TW |
| dc.subject | 磁性奈米粒子 | zh_TW |
| dc.subject | 紫質 | zh_TW |
| dc.subject | porphyrin | en |
| dc.subject | MALDI-TOF MS | en |
| dc.subject | Magnetic Nanoparticle | en |
| dc.title | 發展功能化磁性奈米粒子結合質譜技術偵測內生性紫質 | zh_TW |
| dc.title | Magnetic NTA -Based Affinity Mass Spectrometry for Rapid Detection of Indigenous Porphyrins | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 陳玉如(Yu-Ju Chen) | |
| dc.contributor.oralexamcommittee | 周綠蘋(Lu-Ping Chow),張富雄(Fu-Hsiung Chang) | |
| dc.subject.keyword | 質譜,磁性奈米粒子,紫質, | zh_TW |
| dc.subject.keyword | MALDI-TOF MS,Magnetic Nanoparticle,porphyrin, | en |
| dc.relation.page | 62 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-10 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 4.87 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
