請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37697
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 范文祥 | |
dc.contributor.author | Ying-Yu Ma | en |
dc.contributor.author | 馬迎煜 | zh_TW |
dc.date.accessioned | 2021-06-13T15:39:12Z | - |
dc.date.available | 2013-07-21 | |
dc.date.copyright | 2008-07-21 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-07-09 | |
dc.identifier.citation | 1. Chiang, C.K., et al., Electrical Conductivity in Doped Polyacetylene. Physical Review Letters, 1977. 39(17): p. 1098-1101.
2. Burroughes, J.H., D.D.C. Bradley, and A.R. Brown, etal. Light emitting diodes based on conjugated polymers [J]. Nature, 1990. 347: p. 539. 3. Sirringhaus, H., Science, 1999. 401(685). 4. U. Salzner, J.B.L., P.G. Pickup, P.A. Poririer, Synth. Met., 1998. 96: p. 177. 5. Kietzke, T., Recent Advances in Organic Solar Cells. 6. Hwang, I.W., D. Moses, and A.J. Heeger, Photoinduced Carrier Generation in P3HT/PCBM Bulk Heterojunction Materials. 7. Reyes-Reyes, M., K. Kim, and D.L. Carroll, High-efficiency photovoltaic devices based on annealed poly (3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6, 6) C blends. Applied Physics Letters, 2005. 87: p. 083506. 8. Fogal, B.J., Electronic Transport Properties of Stabilized Amorphous Selenium X-ray Photoconductors. 9. Mott, N.F., Electrons in disordered structures. Advances In Physics, 2001. 50(7): p. 865-945. 10. Inigo, A.R., et al., Non-dispersive Hole Transport in a Soluble Poly (p-phenylene vinylene). Advanced Materials, 2001. 13(7): p. 504-508. 11. Pfister, G. and H. Scher, Dispersive (non-Gaussian) transient transport in disordered solids. Advances In Physics, 1978. 27(5): p. 747-798. 12. Scher, H., Time scale invariance in transport and relaxation. AIP Conference Proceedings, 1992. 256: p. 485. 13. Pai, D.M., Transient Photoconductivity in Poly (N-vinylcarbazole). The Journal of Chemical Physics, 2003. 52: p. 2285. 14. Gill, W.D., Drift mobilities in amorphous charge-transfer complexes of trinitrofluorenone and poly-n-vinylcarbazole. Journal of Applied Physics, 2003. 43: p. 5033. 15. Bassler, Physica Status Solidi, 1993. 175(15). 16. Miller, A. and E. Abrahams, Impurity Conduction at Low Concentrations. Physical Review, 1960. 120(3): p. 745-755. 17. Borsenberger, P.M., R. Richert, and H. Bassler, Dispersive and nondispersive charge transport in a molecularly doped polymer with superimposed energetic and positional disorder. Physical Review B, 1993. 47(8): p. 4289-4295. 18. Borsenberger, P.M., Hole transport in mixtures of 1, 1-bis (di-4-tolylaminophenyl) cyclohexane and bisphenol A polycarbonate. Journal of Applied Physics, 1990. 68: p. 5682. 19. Tan, C.H., et al., The morphological dependence of charge transport in a soluble luminescent conjugated polymer. Organic Electronics, 2002. 3(2): p. 81-88. 20. Jeng, U., et al., Morphology and Charge Transport in Poly (2-methoxy-5-(2′-ethylhexyloxy)-1, 4-phenylenevinylene) Films. Macromolecules, 2005. 38(15): p. 6566-6574. 21. Hung, W.Y., et al., Employing ambipolar oligofluorene as the charge-generation layer in time-of-flight mobility measurements of organic thin films. Applied Physics Letters, 2006. 88: p. 064102. 22. Markham, J.P.J., et al., Charge transport in highly efficient iridium cored electrophosphorescent dendrimers. Journal of Applied Physics, 2003. 95: p. 438. 23. Chen, F.C., Q. Xu, and Y. Yang, Enhanced efficiency of plastic photovoltaic devices by blending with ionic solid electrolytes. Applied Physics Letters, 2004. 84: p. 3181. 24. Yu, G., et al., Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions. Science, 1995. 270(5243): p. 1789. 25. Huang, J., G. Li, and Y. Yang, Influence of composition and heat-treatment on the charge transport properties of poly (3-hexylthiophene) and [6, 6]-phenyl C-butyric acid methyl ester blends. Applied Physics Letters, 2005. 87: p. 112105. 26. Mozer, A.J. and N.S. Sariciftci, Negative electric field dependence of charge carrier drift mobility in conjugated, semiconducting polymers. Chemical Physics Letters, 2004. 389(4-6): p. 438-442. 27. Sirringhaus, H., et al., Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature, 1999. 401(6754): p. 685-688. 28. 黃健耀, ELECTRONIC STRUCTURE AND TIME OF FLIGHT. 2003, The Ohio State University. 29. Josefowicz, J.Y., C.C. Yang, and Z. Popovic, New Charge-Transfer Mechanism across the Interface between Selenium and Polystyrene Hexylmethacrylate. Physical Review Letters, 1979. 43(12): p. 886-889. 30. Lioudakis, E., et al., Optical properties of conjugated poly (3-hexylthiophene)/[6, 6]-phenylC-butyric acid methyl ester composites. Journal of Applied Physics, 2007. 102: p. 083104. 31. Choulis, S.A., et al., High ambipolar and balanced carrier mobility in regioregular poly (3-hexylthiophene). Applied Physics Letters, 2004. 85: p. 3890. 32. Zhokhavets, D.P.U., COMPOSITE CONJUGATED POLYMER/FULLERENE FILMS: STRUCTURE–PROPERTY RELATION. 33. Chasteen, S.V., S.A. Carter, and G. Rumbles, Exciton dynamics and device performance in polythiophene heterojunctions for photovoltaics. Proc. of SPIE Vol. 5938: p. 59380J-1. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37697 | - |
dc.description.abstract | 藉由旋轉塗佈(spin-cast)製造的薄膜被廣泛使用在高分子太陽能電池和高分子場效應電晶體。用旋轉塗佈方法製造的薄膜膜厚能控制在300奈米以下。藉由飛行時間法量測垂直載子遷移率,必須使用液滴塗佈(drop-cast)方法製造薄膜以致於光的穿透深度是遠小於整個樣品的厚度。但是使用液滴塗佈方法並不能取代旋轉塗佈的方法,因為這兩種方法會產生不同的薄膜形態,這些不同的薄膜形態會影響載子遷移率。為了量測實際應用在高分子太陽能電池和高分子場效應電晶體的薄膜,我們必須要在Indium Tin Oxide (ITO)玻璃上面加上一層價數產生層,然後在用旋轉塗佈的方法把薄膜製造在價數產生層上面。在實驗中,使用不同重量比的P3HT和PCBM溶在氯苯(chlorobenzene)裡面,並利用液滴塗佈和旋轉塗佈的方法製造薄膜,利用時間飛行法量測這些不同方式製造出來的薄膜的垂直載子遷移率。結果顯示,利用旋轉塗佈製造的膜其電子垂直的遷移率是比用液滴塗佈製造的膜大差不多兩個數量級,這樣的結果可由π-π堆疊的結構來解釋。 | zh_TW |
dc.description.abstract | Films fabricated by spin-cast technique are used in organic polymer solar cell and polymer light emitting diode. The thickness of spin-cast film could be controlled below 300 nm. In the vertical carrier mobility measured by time of flight, we used drop-cast method to fabricate thick films (several micrometer) that light penetration depth is less than the total thickness of the film. However, the morphologies of the films by spin-cast and by drop-cast are different. The different morphologies would affect the charge carrier mobility. In order to measure the real films used in polymer solar cell and polymer light emitting diode, the charge generation layer is deposited on Indium Tin Oxide (ITO) glass, and the films are fabricated by spin-cast on the charge generation layer. In this work, the different weight ratio of P3HT:PCBM is dissolved in chlorobenzene, and these films are fabricated by drop-cast and spin-cast. The vertical charge carrier mobility of these different film processes are measured by time of flight technique. The results show the vertical electron mobility which film is fabricated by spin-cast is about two orders of magnitude lager than the film fabricated by drop-cast. As the result, | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T15:39:12Z (GMT). No. of bitstreams: 1 ntu-97-R95549031-1.pdf: 3097195 bytes, checksum: c5e6d41258a5a042f809b137b4ac7e21 (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 口試委員會審定書……………………………………………………………………I
誌謝 II 中文摘要 III 英文摘要 IV 1 Introduction 1 1.1 Conjugated Polymers 1 1.2 Organic Solar Cell 4 1.2.1 Bulk Heterojunction 4 1.2.2 P3HT/PCBM Blend 6 1.3 Amorphous Selenium 8 1.3.1 The Atomic Structure and Band Model of Amorphous Semiconductors 9 1.3.2 Amorphous Selenium Properties 11 1.4 Transport of Charge Carrier Behavior 12 1.5 Disorder System Model 15 1.6 Charge Generation Layer 19 1.7 Motivation 21 2 Experiment Methods 23 2.1 Substrate Preparation 23 2.2 Solution Preparation 23 2.3 Film Fabrication 24 2.4 Improved Methods 25 2.5 Device Fabrication 26 2.6 Time of Flight Principle 27 2.7 Experimental Setup 29 2.8 X-Ray Reflectivity (XRR) Measurements 30 3 Results and Discussion 31 3.1 Charge-Transfer Mechanism of The Hole from Selenium to Polymer 31 3.2 The Electric Field and Temperature Dependence on Drop-Cast Films 35 3.3 Charge Transport Anisotropy due to Morphology 42 4 Conclusions 51 Reference……………………………………………………………………………52 | |
dc.language.iso | en | |
dc.title | 利用飛行時間法量測P3HT混合PCBM薄膜的電子遷移率 | zh_TW |
dc.title | Electron Mobility of P3HT:PCBM Blend Film Measured by Time of Flight Experiment | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 曹培熙,林宗欣 | |
dc.subject.keyword | 旋轉塗佈,液滴塗佈,薄膜形態,垂直載子遷移率,π-π堆疊, | zh_TW |
dc.subject.keyword | spin-cast,drop-cast,morphology,,vertical charge carrier mobility,π-π stacking, | en |
dc.relation.page | 54 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-07-09 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
顯示於系所單位: | 高分子科學與工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 3.02 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。