Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37694
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂育道(Yuh-Dauh Lyuu)
dc.contributor.authorHung-Pin Shihen
dc.contributor.author石鴻賓zh_TW
dc.date.accessioned2021-06-13T15:39:02Z-
dc.date.available2013-07-18
dc.date.copyright2008-07-18
dc.date.issued2008
dc.date.submitted2008-07-09
dc.identifier.citation[1] S. Chib and E. Greenberg. (1995) Understanding the Metropolis-Hasting Algorithm. The American Statistician, Vol. 49, No. 4 (November 1995), pp. 327–335.
[2] J. Munkres. (1957) Algorithms for the Assignment and Transportation Problems. Journal of the Society of Industrial and Applied Mathematics, Vol. 5, No. 1 (March 1957), pp. 32–38.
[3] Y. Nakamichi and T. Arita. (2001) Diversity Control in Ant Colony Optimization. Proceedings of the Inaugural Workshop on Artificial Life (AL’01), pp. 70–78, Adelaide, Australia, December 2001.
[4] T. St¨utzle, M. Dorigo. (1999) ACO Algorithms for the Traveling Salesman Problem. In K. Miettinen, M. Makela, P. Neittaanmaki, and J. Periaux, editors, Evolutionary Algorithms in Engineering and Computer Science. Wiley, 1999.
[5] I, Wegener. (2005) Simulated Annealing Beats Metropolis in Combinatorial Optimization. ICALP 2005. LNCS 3580, pp. 589–601.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37694-
dc.description.abstractThis thesis applies two algorithms to the maximum and minimum weighted bipartite matching problems. In such matching problems, the maximization and minimization problems are essentially same in that one can be transformed
into the other by replacing the weight on each edge with an inverse of the weight. Depending on the algorithms we used, we will choose the maximization or minimization problems for illustrations. We apply the ant colony optimization (ACO) algorithm on a minimum weighted bipartite matching
problem by transforming the problem to a traveling salesman problem (TSP). It may seem that makes the problem more complicated, but in reality it does not. We call this algorithm “ant-matching,” which can solve any weighted
bipartite matching problems with or without a perfect matching. Besides, we also apply the Metropolis algorithm to solve the maximum weighted bipartite matching problem. To analyze the performance on these two algorithms, we
compare the algorithms with the exact Hungarian algorithm, a well-known combinatorial optimization method for solving the weighted bipartite matching problem.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:39:02Z (GMT). No. of bitstreams: 1
ntu-97-R95922165-1.pdf: 328569 bytes, checksum: 4152a985c5518d4cdc4afa4503e5d8ad (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents1 Introduction 5
2 Preliminaries 6
2.1 Maximum/Minimum Weighted Bipartite Matching . . . . . 6
2.1.1 Weighted Bipartite Graph . . . . . . . . . . . . . 6
2.1.2 Maximum/Minimum Weighted Bipartite Matching . . . . 6
2.2 Ant Colony Optimization . . . . . . . . . . . . . . . 7
2.3 Metropolis Algorithm . . . . . . . . . . . . . . . . 8
3 Maximum/Minimum Weighted Bipartite Matching Problems 10
3.1 ACO Algorithm for Minimum-Weighted Bipartite Matching 10
3.1.1 Transforming Minimum-Weighted Bipartite Matching
to Traveling Salesman Problem . . . . . . . . . . . . . . 11
3.1.2 Using ACO Algorithm to Solve Minimum-Weighted Bipartite Matching . . . . . . . . . . . . . . . . . . . 13
3.1.3 The Complexity of Ant-Matching Algorithm . . . . . 14
3.2 Metropolis Algorithm for Maximum-Weighted Bipartite
Matching . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.1 The Complexity of Metropolis Algorithm . . . . . . 16
4 Experimental Results 17
4.1 Comparison of Complexity . . . . . . . . . . . . . . 17
4.2 Graph Sampling Algorithm . . . . . . . . . . . . . . 18
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . 18
4.3.1 Results on Complete Bipartite Graphs . . . . . . . 19
4.3.2 Results on Sparse Bipartite Graphs . . . . . . . . 20
4.3.3 Results on Ant-Matching Algorithm . . . . . . . . . 23
4.3.4 Results on Metropolis Algorithm . . . . . . . . . . 25
5 Conclusions 35
Bibliography 36
dc.language.isoen
dc.subject螞蟻最佳化zh_TW
dc.subject權重zh_TW
dc.subject配對問題zh_TW
dc.subjectMetropolis algorithmen
dc.subjectMinimum weighted bipartite matchingen
dc.subjectMaximum weighted bipartite matchingen
dc.subjectAnt colony optimizationen
dc.title兩個演算法解決最大及最小配對問題zh_TW
dc.titleTwo Algorithms for Maximum and Minimum Weighted Bipartite Matchingen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee金國興(Guo-Xing Jin),戴天時(Tian-Shyr Dai)
dc.subject.keyword配對問題,螞蟻最佳化,權重,zh_TW
dc.subject.keywordMetropolis algorithm,Ant colony optimization,Maximum weighted bipartite matching,Minimum weighted bipartite matching,en
dc.relation.page36
dc.rights.note有償授權
dc.date.accepted2008-07-09
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
320.87 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved