請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37692
標題: | 應用自動微分及截斷牛頓法於條件隨機場 Applying Automatic Differentiation and Truncated Newton Methods to Conditional Random Fields |
作者: | Hsiang-Jui Wang 王湘叡 |
指導教授: | 林智仁(Chih-Jen Lin) |
關鍵字: | 自動微分,共軛梯度法,截斷牛頓法,最大熵值法,條件隨機場, automatic differentiation,conjugate gradient methods,truncated New- ton methods,maximum entropy,conditional random fields, |
出版年 : | 2008 |
學位: | 碩士 |
摘要: | 近年來,很多領域興起將序列的資料標上標籤。條件隨機場則是一種常用來解此類問題的方法,但其封閉形式的海森矩陣並不易導出。這困難致使一些使用二次微分資訊的最佳化方法不適用,如牛頓法。自動微分則是一種技巧,可以用來計算一個函數的導數值而無梯度函數。並且,藉由自動微分來計算海森矩陣與向量之乘積只需梯度函數而無需海森矩陣。本篇論文先說明自動微分的背景知識。然後結合截斷牛頓法及自動微分,並用之於解決條件隨機場。 In recent years, labeling sequential data arises in many fields. Conditional random fields are a popular model for solving this type of problems. Its Hessian matrix in a closed form is not easy to derive. This difficulty causes that optimization methods using second-order information like the Hessian-vector products may not be suitable. Automatic differentiation is a technique to evaluate derivatives of a function without its gradient function. Moreover, computing Hessian-vector products by automatic differentiation only requires the gradient function but not the Hessian matrix. This thesis first gives a study on the background knowledge of automatic differentiation. Then it merges truncated Newton methods with automatic differentiation for solving conditional random fields. |
URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37692 |
全文授權: | 有償授權 |
顯示於系所單位: | 資訊工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 944.4 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。